Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Caenorhabditis elegans early embryogenesis and vulval morphogenesis require chondroitin biosynthesis

Abstract

Defects in glycosaminoglycan biosynthesis disrupt animal development and can cause human disease1,2,3,4. So far much of the focus on glycosaminoglycans has been on heparan sulphate. Mutations in eight squashed vulva (sqv) genes in Caenorhabditis elegans cause defects in cytokinesis during embryogenesis and in vulval morphogenesis during postembryonic development5,6. Seven of the eight sqv genes have been shown to control the biosynthesis of the glycosaminoglycans chondroitin and heparan sulphate6,7,8,9,10,11. Here we present the molecular identification and characterization of the eighth gene, sqv-5. This gene encodes a bifunctional glycosyltransferase that is probably localized to the Golgi apparatus and is responsible for the biosynthesis of chondroitin but not heparan sulphate. Our findings show that chondroitin is crucial for both cytokinesis and morphogenesis during C. elegans development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sequence alignment of SQV-5 and homologues.
Figure 2: Glycosyltransferase activities were assayed using cell-free extracts prepared from wild type (+/+) and sqv-5(n3611) heterozygotes (-/+) and homozygotes (-/-).
Figure 3: Wild-type worms were stained with antibodies specific for SQV-5 and/or SQV-1 (ref.
Figure 4: Model of the function of SQV proteins in the biosynthesis of heparan and chondroitin backbones.

Similar content being viewed by others

References

  1. Quentin, E., Gladen, A., Roden, L. & Kresse, H. A genetic defect in the biosynthesis of dermatan sulfate proteoglycan: galactosyltransferase I deficiency in fibroblasts from a patient with a progeroid syndrome. Proc. Natl Acad. Sci. USA 87, 1342–1346 (1990)

    Article  ADS  CAS  Google Scholar 

  2. Perrimon, N. & Bernfield, M. Specificities of heparan sulphate proteoglycans in developmental processes. Nature 404, 725–728 (2000)

    Article  ADS  CAS  Google Scholar 

  3. Zak, B. M., Crawford, B. E. & Esko, J. D. Hereditary multiple exostoses and heparan sulfate polymerization. Biochim. Biophys. Acta 1573, 346–355 (2002)

    Article  CAS  Google Scholar 

  4. Schwartz, N. B. & Domowicz, M. Chondrodysplasias due to proteoglycan defects. Glycobiology 12, 57R–68R (2002)

    Article  CAS  Google Scholar 

  5. Herman, T., Hartwieg, E. & Horvitz, H. R. sqv mutants of Caenorhabditis elegans are defective in vulval epithelial invagination. Proc. Natl Acad. Sci. USA 96, 968–973 (1999)

    Article  ADS  CAS  Google Scholar 

  6. Hwang, H.-Y. & Horvitz, H. R. The SQV-1 UDP-glucuronic acid decarboxylase and the SQV-7 nucleotide-sugar transporter may act in the Golgi apparatus to affect C. elegans vulval morphogenesis and embryonic development. Proc. Natl Acad. Sci. USA 99, 14218–14223 (2002)

    Article  ADS  CAS  Google Scholar 

  7. Herman, T. & Horvitz, H. R. Three proteins involved in Caenorhabditis elegans vulval invagination are similar to components of a glycosylation pathway. Proc. Natl Acad. Sci. USA 96, 974–979 (1999)

    Article  ADS  CAS  Google Scholar 

  8. Bulik, D. A. et al. sqv-3, -7, and -8, a set of genes affecting morphogenesis in Caenorhabditis elegans, encode enzymes required for glycosaminoglycan biosynthesis. Proc. Natl Acad. Sci. USA 97, 10838–108343 (2000)

    Article  ADS  CAS  Google Scholar 

  9. Berninsone, P., Hwang, H. Y., Zemtseva, I., Horvitz, H. R. & Hirschberg, C. B. SQV-7, a protein involved in Caenorhabditis elegans epithelial invagination and early embryogenesis, transports UDP-glucuronic acid, UDP-N-acetylgalactosamine, and UDP-galactose. Proc. Natl Acad. Sci. USA 98, 3738–3743 (2001)

    Article  ADS  CAS  Google Scholar 

  10. Hwang, H.-Y. & Horvitz, H. R. The C. elegans vulval morphogenesis gene sqv-4 encodes a UDP-glucose dehydrogenase that is temporally and spatially regulated. Proc. Natl Acad. Sci. USA 99, 14224–14229 (2002)

    Article  ADS  CAS  Google Scholar 

  11. Hwang, H.-Y., Olson, S. K., Brown, J. R., Esko, J. D. & Horvitz, H. R. The C. elegans genes sqv-2 and sqv-6, which are involved in vulval morphogenesis, encode glycosaminoglycan galactosyltransferase II and xylosyltransferase. J. Biol. Chem. 278, 11735–11738 (2003)

    Article  CAS  Google Scholar 

  12. Comper, W. D. & Laurent, T. C. Physiological function of connective tissue polysaccharides. Physiol. Rev. 58, 255–315 (1978)

    Article  CAS  Google Scholar 

  13. Ruoslahti, E. Structure and biology of proteoglycans. Annu. Rev. Cell Biol. 4, 229–255 (1988)

    Article  CAS  Google Scholar 

  14. Esko, J. D. & Selleck, S. B. Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu. Rev. Biochem. 71, 435–471 (2002)

    Article  CAS  Google Scholar 

  15. Silbert, J. E. & Sugumaran, G. Biosynthesis of chondroitin/dermatan sulfate. Intl Union Biochem. Mol. Biol. Life 54, 177–186 (2002)

    Article  CAS  Google Scholar 

  16. Austin, C. R. Fertilization (New Jersey, Prentice Hall, Englewood Cliffs, 1965)

    Google Scholar 

  17. Almeida, R. et al. Cloning and expression of a proteoglycan UDP-galactose: β-xylose β1,4-galactosyltransferase I. J. Biol. Chem. 274, 26165–26171 (1999)

    Article  CAS  Google Scholar 

  18. Okajima, T., Fukumoto, S., Furukawa, K. & Urano, T. Molecular basis for the progeroid variant of Ehlers–Danlos syndrome. J. Biol. Chem. 274, 28841–28844 (1999)

    Article  CAS  Google Scholar 

  19. Kitagawa, H., Uyama, T. & Sugahara, K. Molecular cloning and expression of a human chondroitin synthase. J. Biol. Chem. 276, 38721–38726 (2001)

    Article  CAS  Google Scholar 

  20. Uyama, T., Kitagawa, H., Tamura Ji, J. & Sugahara, K. Molecular cloning and expression of human chondroitin N-acetylgalactosaminyltransferase. J. Biol. Chem. 277, 8841–8846 (2002)

    Article  CAS  Google Scholar 

  21. Yamada, S. et al. Demonstration of glycosaminoglycans in Caenorhabditis elegans. FEBS Lett. 459, 327–331 (1999)

    Article  CAS  Google Scholar 

  22. Toyoda, H., Kinoshita-Toyoda, A. & Selleck, S. B. Structural analysis of glycosaminoglycans in Drosophila and Caenorhabditis elegans and demonstration that tout-velu, a Drosophila gene related to EXT tumour suppressors, affects heparan sulfate in vivo. J. Biol. Chem. 275, 2269–2275 (2000)

    Article  CAS  Google Scholar 

  23. Timmons, L. & Fire, A. Specific interference by ingested dsRNA. Nature 395, 854 (1998)

    Article  ADS  CAS  Google Scholar 

  24. Lane, M. C., Koehl, M. A., Wilt, F. & Keller, R. A role for regulated secretion of apical extracellular matrix during epithelial invagination in the sea urchin. Development 117, 1049–1060 (1993)

    CAS  PubMed  Google Scholar 

  25. Ellis, R. E. & Kimble, J. The fog-3 gene and regulation of cell fate in the germ line of Caenorhabditis elegans. Genetics 139, 561–577 (1995)

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Jansen, G., Hazendonk, E., Thijssen, K. L. & Plasterk, R. H. Reverse genetics by chemical mutagenesis in Caenorhabditis elegans. Nature Genet. 17, 119–121 (1997)

    Article  CAS  Google Scholar 

  27. Nagasawa, K., Inoue, Y. & Kamata, T. Solvolytic desulfation of glycosaminoglycuronan sulfates with dimethyl sulfoxide containing water or methanol. Carbohydr. Res. 58, 47–55 (1977)

    Article  CAS  Google Scholar 

  28. Fritz, T. A., Gabb, M. M., Wei, G. & Esko, J. D. Two N-acetylglucosaminyltransferases catalyze the biosynthesis of heparan sulfate. J. Biol. Chem. 269, 28809–28814 (1994)

    CAS  PubMed  Google Scholar 

  29. Wei, G. et al. Location of the glucuronosyltransferase domain in the heparan sulfate copolymerase EXT1 by analysis of Chinese hamster ovary cell mutants. J. Biol. Chem. 275, 27733–27740 (2000)

    CAS  PubMed  Google Scholar 

  30. Esko, J. D. in Current Protocols in Molecular Biology (ed. Ausubel, F.) 17.2.1–17.2.9 (John Wiley and Sons, New York, 1993)

    Google Scholar 

Download references

Acknowledgements

We thank B. Castor for help with DNA sequencing; Y. Kohara for the cDNA clones yk20dy and yk21g9; A. Coulson for cosmids; J. Brown for the GlcAβ1,3Gal-O-NM acceptor; B. Zak for N-acetylheparosan acceptor; the Glycotechnology Core at UCSD (supported by an NIH grant) for the preparation of UDP-[1-3H]GlcA; and B. Galvin and I. Perez de la Cruz for reading the manuscript. This work was supported by NIH grants (to H.R.H. and J.D.E.). S.K.O. was supported by an NIH training grant. H.R.H. is an Investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Robert Horvitz.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, HY., Olson, S., Esko, J. et al. Caenorhabditis elegans early embryogenesis and vulval morphogenesis require chondroitin biosynthesis. Nature 423, 439–443 (2003). https://doi.org/10.1038/nature01634

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01634

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing