Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Wnt-mediated axon guidance via the Drosophila Derailed receptor

Abstract

In nervous systems with bilateral symmetry, many neurons project axons across the midline to the opposite side. In each segment of the Drosophila embryonic nervous system, axons that display this projection pattern choose one of two distinct tracts: the anterior or posterior commissure. Commissure choice is controlled by Derailed, an atypical receptor tyrosine kinase expressed on axons projecting in the anterior commissure. Here we show that Derailed keeps these axons out of the posterior commissure by acting as a receptor for Wnt5, a member of the Wnt family of secreted signalling molecules. Our results reveal an unexpected role in axon guidance for a Wnt family member, and show that the Derailed receptor is an essential component of Wnt signalling in these guidance events.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram of the wnt5 genomic region.
Figure 2: wnt5 suppression of Drl-mediated axon switching.
Figure 3: Wnt5 CNS expression.
Figure 4: wnt5 CNS phenotypes.
Figure 5: Drl binding to Wnt5.

Similar content being viewed by others

References

  1. Dickson, B. J. Molecular mechanisms of axon guidance. Science 298, 1959–1964 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Kennedy, T. E., Serafini, T., de la Torre, J. R. & Tessier-Lavigne, M. Netrins are diffusible chemotropic factors for commissural axons in the embryonic spinal cord. Cell 78, 425–435 (1994)

    Article  CAS  PubMed  Google Scholar 

  3. Harris, R., Sabatelli, L. M. & Seeger, M. A. Guidance cues at the Drosophila CNS midline: identification and characterization of two Drosophila Netrin/UNC-6 homologs. Neuron 17, 217–228 (1996)

    Article  CAS  PubMed  Google Scholar 

  4. Mitchell, K. J. et al. Genetic analysis of Netrin genes in Drosophila: Netrins guide CNS commissural axons and peripheral motor axons. Neuron 17, 203–215 (1996)

    Article  CAS  PubMed  Google Scholar 

  5. Seeger, M., Tear, G., Ferres, M. D. & Goodman, C. S. Mutations affecting growth cone guidance in Drosophila: genes necessary for guidance toward or away from the midline. Neuron 10, 409–426 (1993)

    Article  CAS  PubMed  Google Scholar 

  6. Kidd, T., Russell, C., Goodman, C. S. & Tear, G. Dosage-sensitive and complementary functions of roundabout and commissureless control axon crossing of the CNS midline. Neuron 20, 25–33 (1998)

    Article  CAS  PubMed  Google Scholar 

  7. Kidd, T. et al. Roundabout controls axon crossing of the CNS midline and defines a novel subfamily of evolutionarily conserved guidance receptors. Cell 92, 205–215 (1998)

    Article  CAS  PubMed  Google Scholar 

  8. Kidd, T., Bland, K. S. & Goodman, C. S. Slit is the midline repellent for the robo receptor in Drosophila. Cell 96, 785–794 (1999)

    Article  CAS  PubMed  Google Scholar 

  9. Rajagopalan, S., Nicolas, E., Vivancos, V., Berger, J. & Dickson, B. J. Crossing the midline: roles and regulation of Robo receptors. Neuron 28, 767–777 (2000)

    Article  CAS  PubMed  Google Scholar 

  10. Simpson, J. H., Kidd, T., Bland, K. S. & Goodman, C. S. Short-range and long-range guidance by slit and its Robo receptors. Robo and Robo2 play distinct roles in midline guidance. Neuron 28, 753–766 (2000)

    Article  CAS  PubMed  Google Scholar 

  11. Keleman, K. et al. Comm sorts robo to control axon guidance at the Drosophila midline. Cell 110, 415–427 (2002)

    Article  CAS  PubMed  Google Scholar 

  12. Bonkowsky, J. L., Yoshikawa, S., O'Keefe, D. D., Scully, A. L. & Thomas, J. B. Axon routing across the midline controlled by the Drosophila Derailed receptor. Nature 402, 540–544 (1999)

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Callahan, C. A., Muralidhar, M. G., Lundgren, S. E., Scully, A. L. & Thomas, J. B. Control of neuronal pathway selection by a Drosophila receptor protein-tyrosine kinase family member. Nature 376, 171–174 (1995)

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Moreau-Fauvarque, C., Taillebourg, E., Preat, T. & Dura, J. M. Mutation of linotte causes behavioral defects independently of pigeon in Drosophila. Neuroreport 13, 2309–2312 (2002)

    Article  CAS  PubMed  Google Scholar 

  15. Hovens, C. M. et al. RYK, a receptor tyrosine kinase-related molecule with unusual kinase domain motifs. Proc. Natl Acad. Sci. USA 89, 11818–11822 (1992)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Oates, A. C. et al. Embryonic expression and activity of doughnut, a second RYK homolog in Drosophila. Mech. Dev. 78, 165–169 (1998)

    Article  CAS  PubMed  Google Scholar 

  17. Halford, M. M., Oates, A. C., Hibbs, M. L., Wilks, A. F. & Stacker, S. A. Genomic structure and expression of the mouse growth factor receptor related to tyrosine kinases (Ryk). J. Biol. Chem. 274, 7379–7390 (1999)

    Article  CAS  PubMed  Google Scholar 

  18. Katso, R. M., Russell, R. B. & Ganesan, T. S. Functional analysis of H-Ryk, an atypical member of the receptor tyrosine kinase family. Mol. Cell Biol. 19, 6427–6440 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Savant-Bhonsale, S., Friese, M., McCoon, P. & Montell, D. J. A Drosophila derailed homolog, Doughnut, expressed in invaginating cells during embryogenesis. Gene 231, 155–161 (1999)

    Article  CAS  PubMed  Google Scholar 

  20. Yoshikawa, S., Bonkowsky, J. L., Kokel, M., Shyn, S. & Thomas, J. B. The derailed guidance receptor does not require kinase activity in vivo. J. Neurosci. 21, RC119 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Halford, M. M. et al. Ryk-deficient mice exhibit craniofacial defects associated with perturbed Eph receptor crosstalk. Nature Genet. 25, 414–418 (2000)

    Article  CAS  PubMed  Google Scholar 

  22. Patthy, L. The WIF module. Trends Biochem. Sci. 25, 12–13 (2000)

    Article  CAS  PubMed  Google Scholar 

  23. Hsieh, J. C. et al. A new secreted protein that binds to Wnt proteins and inhibits their activities. Nature 398, 431–436 (1999)

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Wodarz, A. & Nusse, R. Mechanisms of Wnt signaling in development. Annu. Rev. Cell Dev. Biol. 14, 59–88 (1998)

    Article  CAS  PubMed  Google Scholar 

  25. Hall, A. C., Lucas, F. R. & Salinas, P. C. Axonal remodeling and synaptic differentiation in the cerebellum is regulated by WNT-7a signaling. Cell 100, 525–535 (2000)

    Article  CAS  PubMed  Google Scholar 

  26. Krylova, O. et al. WNT-3, expressed by motoneurons, regulates terminal arborization of neurotrophin-3-responsive spinal sensory neurons. Neuron 35, 1043–1056 (2002)

    Article  CAS  PubMed  Google Scholar 

  27. Packard, M. et al. The Drosophila Wnt, wingless, provides an essential signal for pre- and postsynaptic differentiation. Cell 111, 319–330 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bhanot, P. et al. A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature 382, 225–230 (1996)

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Vinson, C. R. & Adler, P. N. Directional non-cell autonomy and the transmission of polarity information by the frizzled gene of Drosophila. Nature 329, 549–551 (1987)

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Fradkin, L. G., Noordermeer, J. N. & Nusse, R. The Drosophila Wnt protein DWnt-3 is a secreted glycoprotein localized on the axon tracts of the embryonic CNS. Dev. Biol. 168, 202–213 (1995)

    Article  CAS  PubMed  Google Scholar 

  31. Eisenberg, L. M., Ingham, P. W. & Brown, A. M. Cloning and characterization of a novel Drosophila Wnt gene, Dwnt-5, a putative downstream target of the homeobox gene distal-less. Dev. Biol. 154, 73–83 (1992)

    Article  CAS  PubMed  Google Scholar 

  32. Russell, J., Gennissen, A. & Nusse, R. Isolation and expression of two novel Wnt/wingless gene homologues in Drosophila. Development 115, 475–485 (1992)

    CAS  PubMed  Google Scholar 

  33. Brand, A. H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993)

    CAS  PubMed  Google Scholar 

  34. Dittrich, R., Bossing, T., Gould, A. P., Technau, G. M. & Urban, J. The differentiation of the serotonergic neurons in the Drosophila ventral nerve cord depends on the combined function of the zinc finger proteins Eagle and Huckebein. Development 124, 2515–2525 (1997)

    CAS  PubMed  Google Scholar 

  35. Callahan, C. A. & Thomas, J. B. Tau-β-galactosidase, an axon-targeted fusion protein. Proc. Natl Acad. Sci. USA 91, 5972–5976 (1994)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rajagopalan, S., Vivancos, V., Nicolas, E. & Dickson, B. J. Selecting a longitudinal pathway: Robo receptors specify the lateral position of axons in the Drosophila CNS. Cell 103, 1033–1045 (2000)

    Article  CAS  PubMed  Google Scholar 

  37. Golembo, M., Raz, E. & Shilo, B. Z. The Drosophila embryonic midline is the site of Spitz processing, and induces activation of the EGF receptor in the ventral ectoderm. Development 122, 3363–3370 (1996)

    CAS  PubMed  Google Scholar 

  38. Wehrli, M. et al. arrow encodes an LDL-receptor-related protein essential for Wingless signalling. Nature 407, 527–530 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Tamai, K. et al. LDL-receptor-related proteins in Wnt signal transduction. Nature 407, 530–535 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Bhat, K. M. frizzled and frizzled 2 play a partially redundant role in wingless signaling and have similar requirements to wingless in neurogenesis. Cell 95, 1027–1036 (1998)

    Article  CAS  PubMed  Google Scholar 

  41. Bhanot, P. et al. Frizzled and Dfrizzled-2 function as redundant receptors for Wingless during Drosophila embryonic development. Development 126, 4175–4186 (1999)

    CAS  PubMed  Google Scholar 

  42. Chen, C. M. & Struhl, G. Wingless transduction by the Frizzled and Frizzled2 proteins of Drosophila. Development 126, 5441–5452 (1999)

    CAS  PubMed  Google Scholar 

  43. Cadigan, K. M., Fish, M. P., Rulifson, E. J. & Nusse, R. Wingless repression of Drosophila frizzled 2 expression shapes the Wingless morphogen gradient in the wing. Cell 93, 767–777 (1998)

    Article  CAS  PubMed  Google Scholar 

  44. Yamaguchi, T. P., Bradley, A., McMahon, A. P. & Jones, S. A Wnt5a pathway underlies outgrowth of multiple structures in the vertebrate embryo. Development 126, 1211–1223 (1999)

    CAS  PubMed  Google Scholar 

  45. Mata, J., Curado, S., Ephrussi, A. & Rorth, P. Tribbles coordinates mitosis and morphogenesis in Drosophila by regulating string/CDC25 proteolysis. Cell 101, 511–522 (2000)

    Article  CAS  PubMed  Google Scholar 

  46. Cohen, E. D. et al. DWnt4 regulates cell movement and focal adhesion kinase during Drosophila ovarian morphogenesis. Dev. Cell 2, 437–448 (2002)

    Article  CAS  PubMed  Google Scholar 

  47. Callahan, C. A., Yoshikawa, S. & Thomas, J. B. Tracing axons. Curr. Biol. 8, 582–586 (1998)

    Article  CAS  Google Scholar 

  48. Gieseler, K. et al. Antagonist activity of DWnt-4 and wingless in the Drosophila embryonic ventral ectoderm and in heterologous Xenopus assays. Mech. Dev. 85, 123–131 (1999)

    Article  CAS  PubMed  Google Scholar 

  49. Noordermeer, J., Johnston, P., Rijsewijk, F., Nusse, R. & Lawrence, P. A. The consequences of ubiquitous expression of the wingless gene in the Drosophila embryo. Development 116, 711–719 (1992)

    CAS  PubMed  Google Scholar 

  50. Thor, S. & Thomas, J. B. The Drosophila islet gene governs axon pathfinding and neurotransmitter identity. Neuron 18, 397–409 (1997)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank G. Struhl, R. Nusse, E. Wilder, B. Dickson and the Bloomington Stock Center for stocks; L. Fradkin and J. Noordermeer for the Wnt5 antibody, stocks and for sharing results prior to publication; and G. Lemke, L. Santschi and M. Boyle for discussion and critical reading of the manuscript. This work was supported by an NRSA fellowship to M.K. and grants from the NIH to R.D.M. and J.B.T. R.D.M. is a member of the Cancer Institute of New Jersey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John B. Thomas.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshikawa, S., McKinnon, R., Kokel, M. et al. Wnt-mediated axon guidance via the Drosophila Derailed receptor. Nature 422, 583–588 (2003). https://doi.org/10.1038/nature01522

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01522

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing