Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Voltage-sensing mechanism is conserved among ion channels gated by opposite voltages

Abstract

Hyperpolarization-activated cyclic-nucleotide-gated (HCN) ion channels are found in rhythmically firing cells in the brain and in the heart1, where the cation current through HCN channels (called Ih or If) causes these cells to fire repeatedly2. These channels are also found in non-pacing cells, where they control resting membrane properties, modulate synaptic transmission, mediate long-term potentiation, and limit extreme hyperpolarizations3,4,5,6,7. HCN channels share sequence motifs with depolarization-activated potassium (Kv) channels, such as the fourth transmembrane segment S48,9. S4 is the main voltage sensor of Kv channels, in which transmembrane movement of S4 charges triggers the opening of the activation gate10,11,12,13,14,15,16,17. Here, using cysteine accessibility methods10,11,12, we investigate whether S4 moves in an HCN channel. We show that S4 movement is conserved between Kv and HCN channels, which indicates that S4 is also the voltage sensor in HCN channels. Our results suggest that a conserved voltage-sensing mechanism operates in the oppositely voltage-gated Kv and HCN channels, but that there are different coupling mechanisms between the voltage sensor and activation gate in the two different channels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Basic features of spHCN channels.
Figure 2: State-dependent accessibility of S338C.
Figure 3: MTSET modification locks activation gate and S4.
Figure 4: S4 movement is conserved between Shaker and spHCN channels.

Similar content being viewed by others

References

  1. Santoro, B. & Tibbs, G. R. The HCN gene family: molecular basis of the hyperpolarization-activated pacemaker channels. Ann. NY Acad. Sci. 868, 741–764 (1999)

    Article  ADS  CAS  Google Scholar 

  2. DiFrancesco, D. Pacemaker mechanisms in cardiac tissue. Annu. Rev. Physiol. 55, 455–472 (1993)

    Article  CAS  Google Scholar 

  3. Pape, H. C. Queer current and pacemaker: the hyperpolarization-activated cation current in neurons. Annu. Rev. Physiol. 58, 299–327 (1996)

    Article  CAS  Google Scholar 

  4. Magee, J. C. Dendritic hyperpolarization-activated currents modify the integrative properties of hippocampal CA1 pyramidal neurons. J. Neurosci. 18, 7613–7624 (1998)

    Article  CAS  Google Scholar 

  5. Magee, J. C. & Carruth, M. Dendritic voltage-gated ion channels regulate the action potential firing mode of hippocampal CA1 pyramidal neurons. J. Neurophysiol. 82, 1895–1901 (1999)

    Article  CAS  Google Scholar 

  6. Beaumont, V. & Zucker, R. S. Enhancement of synaptic transmission by cyclic AMP modulation of presynaptic Ih channels. Nature Neurosci. 3, 133–141 (2000)

    Article  CAS  Google Scholar 

  7. Mellor, J., Nicoll, R. A. & Schmitz, D. Mediation of hippocampal mossy fiber long-term potentiation by presynaptic Ih channels. Science 295, 143–147 (2002)

    Article  ADS  CAS  Google Scholar 

  8. Kaupp, U. B. & Seifert, R. Molecular diversity of pacemaker ion channels. Annu. Rev. Physiol. 63, 235–257 (2001)

    Article  CAS  Google Scholar 

  9. Gauss, R., Seifert, R. & Kaupp, U. B. Molecular identification of a hyperpolarization-activated channel in sea urchin sperm. Nature 393, 583–587 (1998)

    Article  ADS  CAS  Google Scholar 

  10. Yang, N. & Horn, R. Evidence for voltage-dependent S4 movement in sodium channels. Neuron 15, 213–218 (1995)

    Article  CAS  Google Scholar 

  11. Larsson, H. P., Baker, O. S., Dhillon, D. S. & Isacoff, E. Y. Transmembrane movement of the shaker K+ channel S4. Neuron 16, 387–397 (1996)

    Article  CAS  Google Scholar 

  12. Yang, N., George, A. L. Jr & Horn, R. Molecular basis of charge movement in voltage-gated sodium channels. Neuron 16, 113–122 (1996)

    Article  Google Scholar 

  13. Aggarwal, S. K. & MacKinnon, R. Contribution of the S4 segment to gating charge in the Shaker K+ channel. Neuron 16, 1169–1177 (1996)

    Article  CAS  Google Scholar 

  14. Seoh, S. A., Sigg, D., Papazian, D. M. & Bezanilla, F. Voltage-sensing residues in the S2 and S4 segments of the Shaker K+ channel. Neuron 16, 1159–1167 (1996)

    Article  CAS  Google Scholar 

  15. Yusaf, S. P., Wray, D. & Sivaprasadarao, A. Measurement of the movement of the S4 segment during the activation of a voltage-gated potassium channel. Pflugers Arch. 433, 91–97 (1996)

    Article  CAS  Google Scholar 

  16. Mannuzzu, L. M., Moronne, M. M. & Isacoff, E. Y. Direct physical measure of conformational rearrangement underlying potassium channel gating. Science 271, 213–216 (1996)

    Article  ADS  CAS  Google Scholar 

  17. Baker, O. S., Larsson, H. P., Mannuzzu, L. M. & Isacoff, E. Y. Three transmembrane conformations and sequence-dependent displacement of the S4 domain in shaker K+ channel gating. Neuron 20, 1283–1294 (1998)

    Article  CAS  Google Scholar 

  18. Vaca, L. et al. Mutations in the S4 domain of a pacemaker channel alter its voltage dependence. FEBS Lett. 479, 35–40 (2000)

    Article  CAS  Google Scholar 

  19. Chen, J., Mitcheson, J. S., Lin, M. & Sanguinetti, M. C. Functional roles of charged residues in the putative voltage sensor of the HCN2 pacemaker channel. J. Biol. Chem. 275, 36465–36471 (2000)

    Article  CAS  Google Scholar 

  20. Shin, K., Rothberg, B. & Yellen, G. Blocker state dependence and trapping in hyperpolarization-activated cation channels. Evidence for an intracellular activation gate. J. Gen. Physiol. 117, 91–102 (2001)

    Article  CAS  Google Scholar 

  21. Horn, R., Ding, S. & Gruber, H. J. Immobilizing the moving parts of voltage-gated ion channels. J. Gen. Physiol. 116, 461–476 (2000)

    Article  CAS  Google Scholar 

  22. Rothberg, B. S., Shin, K. S., Phale, P. S. & Yellen, G. Voltage-controlled gating at the intracellular entrance to a hyperpolarization-activated cation channel. J. Gen. Physiol. 119, 83–91 (2002)

    Article  CAS  Google Scholar 

  23. Liu, Y., Holmgren, M., Jurman, M. E. & Yellen, G. Gated access to the pore of a voltage-dependent K+ channel. Neuron 19, 175–184 (1997)

    Article  Google Scholar 

  24. del Camino, D., Holmgren, M., Liu, Y. & Yellen, G. Blocker protection in the pore of a voltage-gated K+ channel and its structural implications. Nature 403, 321–325 (2000)

    Article  ADS  CAS  Google Scholar 

  25. Larsson, H. P. & Elinder, F. A conserved glutamate is important for slow inactivation in K+ channels. Neuron 27, 573–583 (2000)

    Article  CAS  Google Scholar 

  26. Allende, C. C., Bravo, R. & Allende, J. E. Comparison of in vivo and in vitro properties of cyclic adenosine 3′:5′-monophosphate phosphodiesterase of amphibian oocytes. J. Biol. Chem. 252, 4662–4666 (1977)

    CAS  PubMed  Google Scholar 

  27. Maller, J. L., Butcher, F. R. & Krebs, E. G. Early effect of progesterone on levels of cyclic adenosine 3′:5′-monophosphate in Xenopus oocytes. J. Biol. Chem. 254, 579–582 (1979)

    CAS  PubMed  Google Scholar 

  28. Taglialatela, M., Toro, L. & Stefani, E. Novel voltage clamp to record small, fast currents from ion channels expressed in Xenopus oocytes. Biophys. J. 61, 78–82 (1992)

    Article  CAS  Google Scholar 

  29. Keynes, R. D. & Elinder, F. The screw-helical voltage gating of ion channels. Proc. R. Soc. Lond. B 266, 843–852 (1999)

    Article  CAS  Google Scholar 

  30. Bezanilla, F. & Armstrong, C. M. Inactivation of the sodium channel. I. Sodium current experiments. J. Gen. Physiol. 70, 549–566 (1977)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank U. B. Kaupp for providing the spHCN clone; A. Broomand, H. Sjölander and S. Pandey for help with some of the recordings; P. Århem for comments on the manuscript; and S. Oster for editing the manuscript. This study was supported by the Swedish Research Council, Åke Wibergs Stiftelse, Magn. Bergvalls Stiftelse, The Swedish Society of Medicine, and Jeanssons Stiftelser and start-up funds from Oregon Health & Science University. F.E. has a junior research position at the Swedish Research Council. R.M. is supported by a pre-doctoral grant from the National Network in Neuroscience in Sweden.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Peter Larsson.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Männikkö, R., Elinder, F. & Larsson, H. Voltage-sensing mechanism is conserved among ion channels gated by opposite voltages. Nature 419, 837–841 (2002). https://doi.org/10.1038/nature01038

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01038

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing