Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Neurexin 1 (NRXN1) splice isoform expression during human neocortical development and aging

Abstract

Neurexin 1 (NRXN1), a presynaptic cell adhesion molecule, is implicated in several neurodevelopmental disorders characterized by synaptic dysfunction including autism, intellectual disability and schizophrenia. To gain insight into NRXN1’s involvement in human cortical development we used quantitative real-time PCR to examine the expression trajectories of NRXN1, and its predominant isoforms, NRXN1-α and NRXN1-β, in prefrontal cortex from fetal stages to aging. In addition, we investigated whether prefrontal cortical expression levels of NRXN1 transcripts are altered in schizophrenia or bipolar disorder in comparison with non-psychiatric control subjects. We observed that all three NRXN1 transcripts were highly expressed during human fetal cortical development, markedly increasing with gestational age. In the postnatal dorsolateral prefrontal cortex, expression levels were negatively correlated with age, peaking at birth until ~3 years of age, after which levels declined markedly to be stable across the lifespan. NRXN1-β expression was modestly but significantly elevated in the brains of patients with schizophrenia compared with non-psychiatric controls, whereas NRXN1-α expression was increased in bipolar disorder. These data provide novel evidence that NRXN1 expression is highest in human dorsolateral prefrontal cortex during critical developmental windows relevant to the onset and diagnosis of a range of neurodevelopmental disorders, and that NRXN1 expression may be differentially altered in neuropsychiatric disorders.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Autism Genome Project C, Szatmari P, Paterson AD, Zwaigenbaum L, Roberts W, Brian J et al. Mapping autism risk loci using genetic linkage and chromosomal rearrangements. Nat Genet 2007; 39: 319–328.

    Article  Google Scholar 

  2. Marshall CR, Noor A, Vincent JB, Lionel AC, Feuk L, Skaug J et al. Structural variation of chromosomes in autism spectrum disorder. Am J Hum Genet 2008; 82: 477–488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Glessner JT, Wang K, Cai G, Korvatska O, Kim CE, Wood S et al. Autism genome-wide copy number variation reveals ubiquitin and neuronal genes. Nature 2009; 459: 569–573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bena F, Bruno DL, Eriksson M, van Ravenswaaij-Arts C, Stark Z, Dijkhuizen T et al. Molecular and clinical characterization of 25 individuals with exonic deletions of NRXN1 and comprehensive review of the literature. Am J Med Genet 2013; 162B: 388–403.

    Article  PubMed  Google Scholar 

  5. Ching MS, Shen Y, Tan WH, Jeste SS, Morrow EM, Chen X et al. Deletions of NRXN1 (neurexin-1) predispose to a wide spectrum of developmental disorders. Am J Med Genet 2010; 153B: 937–947.

    CAS  PubMed  Google Scholar 

  6. Gregor A, Albrecht B, Bader I, Bijlsma EK, Ekici AB, Engels H et al. Expanding the clinical spectrum associated with defects in CNTNAP2 and NRXN1. BMC Med Genet 2011; 12: 106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tucker T, Zahir FR, Griffith M, Delaney A, Chai D, Tsang E et al. Single exon-resolution targeted chromosomal microarray analysis of known and candidate intellectual disability genes. Eur J Hum Genet 2014; 22: 792–800.

    Article  CAS  PubMed  Google Scholar 

  8. Kirov G, Gumus D, Chen W, Norton N, Georgieva L, Sari M et al. Comparative genome hybridization suggests a role for NRXN1 and APBA2 in schizophrenia. Hum Mol Genet 2008; 17: 458–465.

    Article  CAS  PubMed  Google Scholar 

  9. Ikeda M, Aleksic B, Kirov G, Kinoshita Y, Yamanouchi Y, Kitajima T et al. Copy number variation in schizophrenia in the Japanese population. Biol Pyschiatry 2010; 67: 283–286.

    Article  Google Scholar 

  10. International Schizophrenia C. Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature 2008; 455: 237–241.

    Article  Google Scholar 

  11. Need AC, Keefe RS, Ge D, Grossman I, Dickson S, McEvoy JP et al. Pharmacogenetics of antipsychotic response in the CATIE trial: a candidate gene analysis. Eur J Hum Genet 2009; 17: 946–957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rujescu D, Ingason A, Cichon S, Pietilainen OP, Barnes MR, Toulopoulou T et al. Disruption of the neurexin 1 gene is associated with schizophrenia. Hum Mol Genet 2009; 18: 988–996.

    Article  CAS  PubMed  Google Scholar 

  13. Vrijenhoek T, Buizer-Voskamp JE, van der Stelt I, Strengman E et alGenetic R, Outcome in Psychosis C. Recurrent CNVs disrupt three candidate genes in schizophrenia patients. Am J Hum Genet 2008; 83: 504–510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Walsh T, McClellan JM, McCarthy SE, Addington AM, Pierce SB, Cooper GM et al. Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science 2008; 320: 539–543.

    Article  CAS  PubMed  Google Scholar 

  15. Todarello G, Feng N, Kolachana BS, Li C, Vakkalanka R, Bertolino A et al. Incomplete penetrance of NRXN1 deletions in families with schizophrenia. Schizophr Res 2014; 155: 1–7.

    Article  PubMed  Google Scholar 

  16. Souza RP, Meltzer HY, Lieberman JA, Le Foll B, Kennedy JL . Influence of neurexin 1 (NRXN1) polymorphisms in clozapine response. Hum Psychopharmacol 2010; 25: 582–585.

    CAS  PubMed  Google Scholar 

  17. Lett TA, Tiwari AK, Meltzer HY, Lieberman JA, Potkin SG, Voineskos AN et al. The putative functional rs1045881 marker of neurexin-1 in schizophrenia and clozapine response. Schizophr Res 2011; 132: 121–124.

    Article  PubMed  Google Scholar 

  18. Jenkins A, Apud JA, Zhang F, Decot H, Weinberger DR, Law AJ . Identification of candidate single-nucleotide polymorphisms in NRXN1 related to antipsychotic treatment response in patients with schizophrenia. Neuropsychopharmacology 2014; 39: 2170–2178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tansey KE, Rucker JJ, Kavanagh DH, Guipponi M, Perroud N, Bondolfi G et al. Copy number variants and therapeutic response to antidepressant medication in major depressive disorder. Pharmacogenomics J 2014; 14: 395–399.

    Article  CAS  PubMed  Google Scholar 

  20. Nussbaum J, Xu Q, Payne TJ, Ma JZ, Huang W, Gelernter J et al. Significant association of the neurexin-1 gene (NRXN1) with nicotine dependence in European- and African-American smokers. Hum Mol Genet 2008; 17: 1569–1577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yang J, Wang S, Yang Z, Hodgkinson CA, Iarikova P, Ma JZ et al. The contribution of rare and common variants in 30 genes to risk nicotine dependence. Mol Psychiatry 2014; doi:10.1038/mp.2014.156; e-pub ahead of print.

  22. Rowen L, Young J, Birditt B, Kaur A, Madan A, Philipps DL et al. Analysis of the human neurexin genes: alternative splicing and the generation of protein diversity. Genomics 2002; 79: 587–597.

    Article  CAS  PubMed  Google Scholar 

  23. Missler M, Sudhof TC . Neurexins: three genes and 1001 products. Trends Genet 1998; 14: 20–26.

    Article  CAS  PubMed  Google Scholar 

  24. Tabuchi K, Sudhof TC . Structure and evolution of neurexin genes: insight into the mechanism of alternative splicing. Genomics 2002; 79: 849–859.

    Article  CAS  PubMed  Google Scholar 

  25. Sudhof TC . Neuroligins and neurexins link synaptic function to cognitive disease. Nature 2008; 455: 903–911.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Graf ER, Zhang X, Jin SX, Linhoff MW, Craig AM . Neurexins induce differentiation of GABA and glutamate postsynaptic specializations via neuroligins. Cell 2004; 119: 1013–1026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Song JY, Ichtchenko K, Sudhof TC, Brose N . Neuroligin 1 is a postsynaptic cell-adhesion molecule of excitatory synapses. Proc Natl Acad Sci USA 1999; 96: 1100–1105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Varoqueaux F, Jamain S, Brose N . Neuroligin 2 is exclusively localized to inhibitory synapses. Eur J Cell Biol 2004; 83: 449–456.

    Article  CAS  PubMed  Google Scholar 

  29. Boucard AA, Chubykin AA, Comoletti D, Taylor P, Sudhof TC . A splice code for trans-synaptic cell adhesion mediated by binding of neuroligin 1 to alpha- and beta-neurexins. Neuron 2005; 48: 229–236.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang C, Atasoy D, Arac D, Yang X, Fucillo MV, Robison AJ et al. Neurexins physically and functionally interact with GABA(A) receptors. Neuron 2010; 66: 403–416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sun C, Cheng MC, Qin R, Liao DL, Chen TT, Koong FJ et al. Identification and functional characterization of rare mutations of the neuroligin-2 gene (NLGN2) associated with schizophrenia. Hum Mol Genet 2011; 20: 3042–3051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jamain S, Quach H, Betancur C, Rastam M, Colineaux C, Gillberg IC et al. Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nat Genet 2003; 34: 27–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Law AJ, Lipska BK, Weickert CS, Hyde TM, Straub RE, Hashimoto R et al. Neuregulin 1 transcripts are differentially expressed in schizophrenia and regulated by 5' SNPs associated with the disease. Proc Natl Acad Sci USA 2006; 103: 6747–6752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kao WT, Wang Y, Kleinman JE, Lipska BK, Hyde TM, Weinberger DR et al. Common genetic variation in Neuregulin 3 (NRG3) influences risk for schizophrenia and impacts NRG3 expression in human brain. Proc Natl Acad Sci USA 2010; 107: 15619–15624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Andersen SL . Trajectories of brain development: point of vulnerability or window of opportunity? Neurosci Biobehav Rev 2003; 27: 3–18.

    Article  PubMed  Google Scholar 

  36. Tau GZ, Peterson BS . Normal development of brain circuits. Neuropsychopharmacology 2010; 35: 147–168.

    Article  PubMed  Google Scholar 

  37. Huttenlocher PR . Synaptic density in human frontal cortex - developmental changes and effects of aging. Brain Res 1979; 163: 195–205.

    Article  CAS  PubMed  Google Scholar 

  38. Puschel AW, Betz H . Neurexins are differentially expressed in the embryonic nervous system of mice. J Neurosci 1995; 15: 2849–2856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Paraoanu LE, Becker-Roeck M, Christ E, Layer PG . Expression patterns of neurexin-1 and neuroligins in brain and retina of the chick embryo: Neuroligin-3 is absent in retina. Neurosci Lett 2006; 395: 114–117.

    Article  CAS  PubMed  Google Scholar 

  40. Brown SM, Clapcote SJ, Millar JK, Torrance HS, Anderson SM, Walker R et al. Synaptic modulators Nrxn1 and Nrxn3 are disregulated in a Disc1 mouse model of schizophrenia. Mol Psychiatry 2011; 16: 585–587.

    Article  CAS  PubMed  Google Scholar 

  41. Rozic-Kotliroff G, Zisapel N . Ca2+ -dependent splicing of neurexin IIalpha. Biochem Biophys Res Commun 2007; 352: 226–230.

    Article  CAS  PubMed  Google Scholar 

  42. Iijima T, Wu K, Witte H, Hanno-Iijima Y, Glatter T, Richard S et al. SAM68 regulates neuronal activity-dependent alternative splicing of neurexin-1. Cell 2011; 147: 1601–1614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rozic G, Lupowitz Z, Piontkewitz Y, Zisapel N . Dynamic changes in neurexins' alternative splicing: role of Rho-associated protein kinases and relevance to memory formation. PloS One 2011; 6: e18579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kang Y, Zhang X, Dobie F, Wu H, Craig AM . Induction of GABAergic postsynaptic differentiation by alpha-neurexins. J Biol Chem 2008; 283: 2323–2334.

    Article  CAS  PubMed  Google Scholar 

  45. Chih B, Gollan L, Scheiffele P . Alternative splicing controls selective trans-synaptic interactions of the neuroligin-neurexin complex. Neuron 2006; 51: 171–178.

    Article  CAS  PubMed  Google Scholar 

  46. Graf ER, Kang Y, Hauner AM, Craig AM . Structure function and splice site analysis of the synaptogenic activity of the neurexin-1 beta LNS domain. J Neurosci 2006; 26: 4256–4265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Siddiqui TJ, Pancaroglu R, Kang Y, Rooyakkers A, Craig AM . LRRTMs and neuroligins bind neurexins with a differential code to cooperate in glutamate synapse development. J Neurosci 2010; 30: 7495–7506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kumar D, Thakur MK . Perinatal exposure to bisphenol-A impairs spatial memory through upregulation of neurexin1 and neuroligin3 expression in male mouse brain. PloS One 2014; 9: e110482.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Noor A, Lionel AC, Cohen-Woods S, Moghimi N, Rucker J, Fennell A et al. Copy number variant study of bipolar disorder in Canadian and UK populations implicates synaptic genes. Am J Med Genet 2014; 165B: 303–313.

    Article  PubMed  Google Scholar 

  50. International Schizophrenia C, Purcell SM, Wray NR, Stone JL, Visscher PM, O'Donovan MC et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 2009; 460: 748–752.

    Google Scholar 

Download references

Acknowledgements

This research was supported primarily by funds from the National Institutes of Health, National Institute of Mental Health intramural program to the Law lab and Clinical Brain Disorders Branch, and in part by NIH, R01MH103716 (Law PI). We would like to acknowledge Dr Daniel Weinberger, for additional research support from the Clinical Brain Disorders Branch and Amy Deep-Soboslay of the National Institutes of Health, National Institute of Mental Health and Lieber Institute for Brain Development for efforts in demographic characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A J Law.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jenkins, A., Paterson, C., Wang, Y. et al. Neurexin 1 (NRXN1) splice isoform expression during human neocortical development and aging. Mol Psychiatry 21, 701–706 (2016). https://doi.org/10.1038/mp.2015.107

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2015.107

This article is cited by

Search

Quick links