Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Promoter polymorphisms in two overlapping 6p25 genes implicate mitochondrial proteins in cognitive deficit in schizophrenia

Abstract

In a previous study, we detected a 6p25–p24 region linked to schizophrenia in families with high composite cognitive deficit (CD) scores, a quantitative trait integrating multiple cognitive measures. Association mapping of a 10 Mb interval identified a 260 kb region with a cluster of single-nucleotide polymorphisms (SNPs) significantly associated with CD scores and memory performance. The region contains two colocalising genes, LYRM4 and FARS2, both encoding mitochondrial proteins. The two tagging SNPs with strongest evidence of association were located around the overlapping putative promoters, with rs2224391 predicted to alter a transcription factor binding site (TFBS). Sequencing the promoter region identified 22 SNPs, many predicted to affect TFBSs, in a tight linkage disequilibrium block. Luciferase reporter assays confirmed promoter activity in the predicted promoter region, and demonstrated marked downregulation of expression in the LYRM4 direction under the haplotype comprising the minor alleles of promoter SNPs, which however is not driven by rs2224391. Experimental evidence from LYRM4 expression in lymphoblasts, gel-shift assays and modelling of DNA breathing dynamics pointed to two adjacent promoter SNPs, rs7752203–rs4141761, as the functional variants affecting expression. Their C–G alleles were associated with higher transcriptional activity and preferential binding of nuclear proteins, whereas the G–A combination had opposite effects and was associated with poor memory and high CD scores. LYRM4 is a eukaryote-specific component of the mitochondrial biogenesis of Fe–S clusters, essential cofactors in multiple processes, including oxidative phosphorylation. LYRM4 downregulation may be one of the mechanisms involved in inefficient oxidative phosphorylation and oxidative stress, increasingly recognised as contributors to schizophrenia pathogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Jablensky A . Subtyping schizophrenia: implications for genetic research. Mol Psychiatry 2006; 11: 815–836.

    Article  CAS  PubMed  Google Scholar 

  2. Jablensky A . The diagnostic concept of schizophrenia: its history, evolution, and future prospects. Dialogues Clin Neurosci 2010; 12: 271–287.

    PubMed  PubMed Central  Google Scholar 

  3. Botstein D, Risch N . Discovering genotypes underlying human phenotypes: past successes for Mendelian disease, future approaches for complex disease. Nat Genet 2003; 33: 228–237.

    Article  CAS  PubMed  Google Scholar 

  4. Heinrichs RW, Zakzanis KK . Neurocognitive deficit in schizophrenia: a quantitative review of the evidence. Neuropsychology 1998; 12: 426–445.

    Article  CAS  PubMed  Google Scholar 

  5. Gur RE, Calkins ME, Gur RC, Horan WP, Nuechterlein KH, Seidman LJ et al. The Consortium on the Genetics of Schizophrenia: neurocognitive endophenotypes. Schizophr Bull 2007; 33: 49–68.

    Article  PubMed  Google Scholar 

  6. Reichenberg A . The assessment of neuropsychological functioning in schizophrenia. Dialogues Clin Neurosci 2010; 12: 383–392.

    PubMed  Google Scholar 

  7. Dickinson D, Harvey PD . Systemic hypotheses for generalized cognitive deficits in schizophrenia: a new take on an old problem. Schizophr Bull 2009; 35: 403–414.

    Article  PubMed  Google Scholar 

  8. Woodbury MA, Clive J, Garson Jr A . Mathematical typology: a grade of membership technique for obtaining disease definition. Comput Biomed Res 1978; 11: 277–298.

    Article  CAS  PubMed  Google Scholar 

  9. Manton KG, Korten A, Woodbury MA, Anker M, Jablensky A . Symptom profiles of psychiatric disorders based on graded disease classes: an illustration using data from the WHO International Pilot Study of Schizophrenia. Psychol Med 1994; 24: 133–144.

    Article  CAS  PubMed  Google Scholar 

  10. Hallmayer JF, Kalaydjieva L, Badcock J, Dragovic M, Howell S, Michie PT et al. Genetic evidence for a distinct subtype of schizophrenia characterized by pervasive cognitive deficit. Am J Hum Genet 2005; 77: 468–476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jablensky A . Challenging the genetic complexity of schizophrenia by use of intermediate phenotypes. In: Ritsner MS (ed). The Handbook of Neuropsychiatric Biomarkers, Endophenotypes and Genes. Springer Science: New York, NY, 2009, pp 41–56.

    Chapter  Google Scholar 

  12. Lewis CM, Levinson DF, Wise LH, DeLisi LE, Straub RE, Hovatta I et al. Genome scan meta-analysis of schizophrenia and bipolar disorder, part II: schizophrenia. Am J Hum Genet 2003; 73: 34–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rosenfeld M, Brenner-Lavie H, Ari SG, Kavushansky A, Ben-Shachar D . Perturbation in mitochondrial network dynamics and in complex I dependent cellular respiration in schizophrenia. Biol Psychiatry 2011; 69: 980–988.

    Article  CAS  PubMed  Google Scholar 

  14. Wing JK, Babor T, Brugha T, Burke J, Cooper JE, Giel R et al. SCAN. Schedules for Clinical Assessment in Neuropsychiatry. Arch Gen Psychiatry 1990; 47: 589–593.

    Article  CAS  PubMed  Google Scholar 

  15. Castle DJ, Jablensky A, McGrath JJ, Carr V, Morgan V, Waterreus A et al. The diagnostic interview for psychoses (DIP): development, reliability and applications. Psychol Med 2006; 36: 69–80.

    Article  CAS  PubMed  Google Scholar 

  16. Buchanan RW, Heinrichs DW . The Neurological Evaluation Scale (NES): a structured instrument for the assessment of neurological signs in schizophrenia. Psychiatry Res 1989; 27: 335–350.

    Article  CAS  PubMed  Google Scholar 

  17. Norman PE, Flicker L, Almeida OP, Hankey GJ, Hyde Z, Jamrozik K . Cohort profile: the Health In Men Study (HIMS). Int J Epidemiol 2009; 38: 48–52.

    Article  PubMed  Google Scholar 

  18. Flicker L, Almeida O, Acres J, Le MT, Tuohy RJ, Jamrozik K et al. Predictors of impaired cognitive function in men over the age of 80 years: results from the Health in Men Study. Age Ageing 2005; 35: 77–80.

    Article  Google Scholar 

  19. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007; 81: 559–575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Barrett JC, Fry B, Maller J, Daly MJ . Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005; 21: 263–265.

    Article  CAS  PubMed  Google Scholar 

  21. Sandelin A, Wasserman WW, Lenhard B . ConSite: web-based prediction of regulatory elements using cross-species comparison. Nucleic Acids Res 2004; 32: W249–W252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sanders MA, Verhaak RG, Geertsma-Kleinekoort WM, Abbas S, Horsman S, van der Spek PJ et al. SNPExpress: integrated visualization of genome-wide genotypes, copy numbers and gene expression levels. BMC Genomics 2008; 9: 41.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Weickert CS, Elashoff M, Richards AB, Sinclair D, Bahn S, Paabo S et al. Transcriptome analysis of male–female differences in prefrontal cortical development. Mol Psychiatry 2009; 14: 558–561.

    Article  CAS  PubMed  Google Scholar 

  24. Carter KW, McCaskie PA, Palmer LJ . SimHap GUI: an intuitive graphical user interface for genetic association analysis. BMC Bioinform 2008; 9: 557.

    Article  Google Scholar 

  25. Alexandrov BS, Gelev V, Monisova Y, Alexandrov LB, Bishop AR, Rasmussen KO et al. A nonlinear dynamic model of DNA with a sequence-dependent stacking term. Nucleic Acids Res 2009; 37: 2405–2410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Alexandrov BS, Gelev V, Yoo SW, Alexandrov LB, Fukuyo Y, Bishop AR et al. DNA dynamics play a role as a basal transcription factor in the positioning and regulation of gene transcription initiation. Nucleic Acids Res 2010; 38: 1790–1795.

    Article  CAS  PubMed  Google Scholar 

  27. Peyrard M, Bishop AR . Statistical mechanics of a nonlinear model for DNA denaturation. Phys Rev Lett 1989; 62: 2755–2758.

    Article  CAS  PubMed  Google Scholar 

  28. Alexandrov BS, Gelev V, Yoo SW, Bishop AR, Rasmussen KO, Usheva A . Toward a detailed description of the thermally induced dynamics of the core promoter. PLoS Comput Biol 2009; 5: e1000313.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Tulsky DS, Price LR . The joint WAIS-III and WMS-III factor structure: development and cross-validation of a six-factor model of cognitive functioning. Psychol Assess 2003; 15: 149–162.

    Article  PubMed  Google Scholar 

  30. Ivnik RJ, Smith GE, Petersen RC, Tangalos EG . Long-term stability and intercorrelations of cognitive abilities in older persons. Psychol Assess 1995; 7: 155–161.

    Article  Google Scholar 

  31. Park SG, Schimmel P, Kim S . Aminoacyl tRNA synthetases and their connections to disease. Proc Natl Acad Sci USA 2008; 105: 11043–11049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Antonellis A, Green ED . The role of aminoacyl-tRNA synthetases in genetic diseases. Annu Rev Genomics Hum Genet 2008; 9: 87–107.

    Article  CAS  PubMed  Google Scholar 

  33. Adam AC, Bornhovd C, Prokisch H, Neupert W, Hell K . The Nfs1 interacting protein Isd11 has an essential role in Fe/S cluster biogenesis in mitochondria. EMBO J 2006; 25: 174–183.

    Article  CAS  PubMed  Google Scholar 

  34. Wiedemann N, Urzica E, Guiard B, Muller H, Lohaus C, Meyer HE et al. Essential role of Isd11 in mitochondrial iron–sulfur cluster synthesis on Isu scaffold proteins. EMBO J 2006; 25: 184–195.

    Article  CAS  PubMed  Google Scholar 

  35. Lill R . Function and biogenesis of iron-sulphur proteins. Nature 2009; 460: 831–838.

    Article  CAS  PubMed  Google Scholar 

  36. Tsai C-L, Barondeau DP . Human frataxin is an allosteric switch that activates the Fe–S cluster biosynthesis complex. Biochemistry 2010; 49: 9132–9139.

    Article  CAS  PubMed  Google Scholar 

  37. Skelley SL, Goldberg TE, Egan MF, Weinberger DR, Gold JM . Verbal and visual memory: characterizing the clinical and intermediate phenotype in schizophrenia. Schizophr Res 2008; 105: 78–85.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Storkebaum E, Leitao-Goncalves R, Godenschwege T, Nangle L, Mejia M, Bosmans I et al. Dominant mutations in the tyrosyl-tRNA synthetase gene recapitulate in Drosophila features of human Charcot–Marie–Tooth neuropathy. Proc Natl Acad Sci USA 2009; 106: 11782–11787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Johnson DC, Dean DR, Smith AD, Johnson MK . Structure, function, and formation of biological iron–sulfur clusters. Annu Rev Biochem 2005; 74: 247–281.

    Article  CAS  PubMed  Google Scholar 

  40. Lill R, Muhlenhoff U . Maturation of iron–sulfur proteins in eukaryotes: mechanisms, connected processes, and diseases. Annu Rev Biochem 2008; 77: 669–700.

    CAS  PubMed  Google Scholar 

  41. Olsson A, Lind L, Thornell LE, Holmberg M . Myopathy with lactic acidosis is linked to chromosome 12q23.3–24.11 and caused by an intron mutation in the ISCU gene resulting in a splicing defect. Hum Mol Genet 2008; 17: 1666–1672.

    Article  CAS  PubMed  Google Scholar 

  42. Mochel F, Knight MA, Tong WH, Hernandez D, Ayyad K, Taivassalo T et al. Splice mutation in the iron–sulfur cluster scaffold protein ISCU causes myopathy with exercise intolerance. Am J Hum Genet 2008; 82: 652–660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pandolfo M, Pastore A . The pathogenesis of Friedreich ataxia and the structure and function of frataxin. J Neurol 2009; 256 (Suppl 1): 9–17.

    Article  CAS  PubMed  Google Scholar 

  44. Schmucker S, Puccio H . Understanding the molecular mechanisms of Friedreich's ataxia to develop therapeutic approaches. Hum Mol Genet 2010; 19: R103–R110.

    Article  CAS  PubMed  Google Scholar 

  45. Shan Y, Napoli E, Cortopassi G . Mitochondrial frataxin interacts with ISD11 of the NFS1/ISCU complex and multiple mitochondrial chaperones. Hum Mol Genet 2007; 16: 929–941.

    Article  CAS  PubMed  Google Scholar 

  46. Shi Y, Ghosh MC, Tong WH, Rouault TA . Human ISD11 is essential for both iron–sulfur cluster assembly and maintenance of normal cellular iron homeostasis. Hum Mol Genet 2009; 18: 3014–3025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Prabakaran S, Swatton JE, Ryan MM, Huffaker SJ, Huang JT, Griffin JL et al. Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress. Mol Psychiatry 2004; 9: 684–697.

    Article  CAS  PubMed  Google Scholar 

  48. Martins-de-Souza D, Gattaz WF, Schmitt A, Rewerts C, Marangoni S, Novello JC et al. Alterations in oligodendrocyte proteins, calcium homeostasis and new potential markers in schizophrenia anterior temporal lobe are revealed by shotgun proteome analysis. J Neural Transm 2009; 116: 275–289.

    Article  CAS  PubMed  Google Scholar 

  49. Martins-de-Souza D, Harris LW, Guest PC, Bahn S . The role of energy metabolism dysfunction and oxidative stress in schizophrenia revealed by proteomics. Antioxid Redox Signal 2011; 15: 2067–2079.

    Article  CAS  PubMed  Google Scholar 

  50. Lin MT, Beal MF . Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 2006; 443: 787–795.

    Article  CAS  PubMed  Google Scholar 

  51. Pickrell AM, Moraes CT . What role does mitochondrial stress play in neurodegenerative diseases? Methods Mol Biol 2010; 648: 63–78.

    Article  CAS  PubMed  Google Scholar 

  52. Navarro A, Boveris A . Brain mitochondrial dysfunction in aging, neurodegeneration and Parkinson's disease. Front Aging Neurosci 2010; 2: 34.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Hazlett EA, Buchsbaum MS, Jeu LA, Nenadic I, Fleischman MB, Shihabuddin L et al. Hypofrontality in unmedicated schizophrenia patients studied with PET during performance of a serial verbal learning task. Schizophr Res 2000; 43: 33–46.

    Article  CAS  PubMed  Google Scholar 

  54. Volz HR, Riehemann S, Maurer I, Smesny S, Sommer M, Rzanny R et al. Reduced phosphodiesters and high-energy phosphates in the frontal lobe of schizophrenic patients: a (31)P chemical shift spectroscopic-imaging study. Biol Psychiatry 2000; 47: 954–961.

    Article  CAS  PubMed  Google Scholar 

  55. Shenton ME, Dickey CC, Frumin M, McCarley RW . A review of MRI findings in schizophrenia. Schizophr Res 2001; 49: 1–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bitanihirwe BK, Woo TU . Oxidative stress in schizophrenia: an integrated approach. Neurosci Biobehav Rev 2011; 35: 878–893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Pizzi M, Spano P . Distinct roles of diverse nuclear factor-kappaB complexes in neuropathological mechanisms. Eur J Pharmacol 2006; 545: 22–28.

    Article  CAS  PubMed  Google Scholar 

  58. Massa PT, Aleyasin H, Park DS, Mao X, Barger SW . NFkappaB in neurons? The uncertainty principle in neurobiology. J Neurochem 2006; 97: 607–618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Morgan MJ, Liu ZG . Crosstalk of reactive oxygen species and NF-kappaB signaling. Cell Res 2011; 21: 103–115.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank patients, family members and volunteer controls for their participation. The study was supported by National Health and Medical Research Council of Australia Grant Nos. 37580400 and 37580900 to AJ and LK and Training Fellowship 634551 to DNA, with funding contribution from the North Metropolitan Health Area, Perth, Western Australia. Recruitment and genotyping of the Irish sample was supported by the Wellcome Trust and Science Foundation Ireland (SFI). Research performed at Los Alamos National Laboratory was carried out under the auspices of the National Nuclear Security Administration of the US Department of Energy under Contract No. DE-AC52-06NA25396. GD was supported by an NARSAD Young Investigator Award, and EB-B by an MRC (UK) Young Investigator Award. CSW is supported by the Schizophrenia Research Institute, utilising funds from the Macquarie Group Foundation and NSW Health. The SH-SY5Y cell line was a kind gift from Dr B Meloni (CNND, UWA) and the pcDNA3.1 (+) vector plasmid from Dr K Pfleger (WAIMR, UWA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L Kalaydjieva.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jablensky, A., Angelicheva, D., Donohoe, G. et al. Promoter polymorphisms in two overlapping 6p25 genes implicate mitochondrial proteins in cognitive deficit in schizophrenia. Mol Psychiatry 17, 1328–1339 (2012). https://doi.org/10.1038/mp.2011.129

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2011.129

Keywords

This article is cited by

Search

Quick links