Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Acute Leukemias

Wild-type KRAS inhibits oncogenic KRAS-induced T-ALL in mice

Abstract

The role of hyperactive RAS signaling is well established in myeloid malignancies but less clear in T-cell malignancies. The Kras2LSLMx1-Cre (KM) mouse model expresses endogenous KRASG12D in hematopoietic cells and is widely used to study mechanisms and treatment of myeloproliferative neoplasms (MPN). The model displays an intriguing shift from MPN to acute T-cell leukemia (T-ALL) after transplantation to wild-type mice, but the mechanisms underlying this lineage shift is unknown. Here, we show that KRASG12D increases proliferation of both myeloid and T-cell progenitors, but whereas myeloid cells differentiate, T-cell differentiation is inhibited at early stages. Secondary mutations in the expanded pool of T-cell progenitors accompany T-ALL development, and our results indicate that the shift from myeloid to T-lymphoid malignancy after transplantation is explained by the increased likelihood for secondary mutations when the tumor lifespan is increased. We demonstrate that tumor lifespan increases after transplantation because primary KM mice die rapidly, not from MPN, but from KRASG12D expression in nonhematopoietic cells, which causes intestinal bleeding and severe anemia. We also identify loss of the wild-type KRAS allele as a secondary mutation in all T-ALL cells and provide evidence that wild-type KRAS acts as a tumor suppressor in the T-cell lineage in mice.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

References

  1. Ley T, Miller C, Ding L, Raphael B, Mungall AJ RA, Hoadley K et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med 2013; 368: 2059–2074.

    Article  PubMed  Google Scholar 

  2. Bacher U, Haferlach T, Schnittger S, Kreipe H, Kroger N . Recent advances in diagnosis, molecular pathology and therapy of chronic myelomonocytic leukaemia. Br J Haematol 2011; 153: 149–167.

    Article  PubMed  Google Scholar 

  3. Fatrai S, van Gosliga D, Han L, Daenen SM, Vellenga E, Schuringa JJ . KRAS(G12V) enhances proliferation and initiates myelomonocytic differentiation in human stem/progenitor cells via intrinsic and extrinsic pathways. J Biol Chem 2011; 286: 6061–6070.

    Article  CAS  PubMed  Google Scholar 

  4. Maher J, Baker D, Dibb N, Roberts I . Mutant ras promotes haemopoietic cell proliferation or differentiation in a cell-specific manner. Leukemia 1996; 10: 83–90.

    CAS  PubMed  Google Scholar 

  5. Zhang J, Ding L, Holmfeldt L, Wu G, Heatley SL, Payne-Turner D et al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature 2012; 481: 157–163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mansur MB, Hassan R, Barbosa TC, Splendore A, Jotta PY, Yunes JA et al. Impact of complex NOTCH1 mutations on survival in paediatric T-cell leukaemia. BMC Cancer 2012; 12: 9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wiemels JL, Zhang Y, Chang J, Zheng S, Metayer C, Zhang L et al. RAS mutation is associated with hyperdiploidy and parental characteristics in pediatric acute lymphoblastic leukemia. Leukemia 2005; 19: 415–419.

    Article  CAS  PubMed  Google Scholar 

  8. Holmfeldt L, Wei L, Diaz-Flores E, Walsh M, Zhang J, Ding L et al. The genomic landscape of hypodiploid acute lymphoblastic leukemia. Nat Genet 2013; 45: 242–252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Swan KA, Alberola-Ila J, Gross JA, Appleby MW, Forbush KA, Thomas JF et al. Involvement of p21ras distinguishes positive and negative selection in thymocytes. EMBO J 1995; 14: 276–285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Braun BS, Tuveson DA, Kong N, Le DT, Kogan SC, Rozmus J et al. Somatic activation of oncogenic Kras in hematopoietic cells initiates a rapidly fatal myeloproliferative disorder. Proc Natl Acad Sci USA 2004; 101: 597–602.

    Article  CAS  PubMed  Google Scholar 

  11. Chan IT, Kutok JL, Williams IR, Cohen S, Kelly L, Shigematsu H et al. Conditional expression of oncogenic K-ras from its endogenous promoter induces a myeloproliferative disease. J Clin Invest 2004; 113: 528–538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wahlstrom AM, Cutts BA, Liu M, Lindskog A, Karlsson C, Sjogren AK et al. Inactivating Icmt ameliorates K-RAS-induced myeloproliferative disease. Blood 2008; 112: 1357–1365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lyubynska N, Gorman MF, Lauchle JO, Hong WX, Akutagawa JK, Shannon K et al. A MEK inhibitor abrogates myeloproliferative disease in Kras mutant mice. Science Transl Med 2011; 3: 76ra27.

    Article  Google Scholar 

  14. Dail M, Li Q, McDaniel A, Wong J, Akagi K, Huang B et al. Mutant Ikzf1, KrasG12D, and Notch1 cooperate in T lineage leukemogenesis and modulate responses to targeted agents. Proc Natl Acad Sci USA 2010; 107: 5106–5111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kindler T, Cornejo MG, Scholl C, Liu J, Leeman DS, Haydu JE et al. K-RasG12D-induced T-cell lymphoblastic lymphoma/leukemias harbor Notch1 mutations and are sensitive to gamma-secretase inhibitors. Blood 2008; 112: 3373–3382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kong G, Du J, Liu Y, Meline B, Chang YI, Ranheim EA et al. Notch1 gene mutations target KRAS G12D-expressing CD8+ cells and contribute to their leukemogenic transformation. J Biol Chem 2013; 288: 18219–18227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sabnis AJ, Cheung LS, Dail M, Kang HC, Santaguida M, Hermiston ML et al. Oncogenic Kras initiates leukemia in hematopoietic stem cells. PLoS Biol. 2009; 7: e59.

    Article  PubMed  Google Scholar 

  18. Sjogren AK, Andersson KM, Khan O, Olofsson FJ, Karlsson C, Bergo MO . Inactivating GGTase-I reduces disease phenotypes in a mouse model of K-RAS-induced myeloproliferative disease. Leukemia 2011; 25: 186–189.

    Article  PubMed  Google Scholar 

  19. Zhang J, Wang J, Liu Y, Sidik H, Young KH, Lodish HF et al. Oncogenic Kras-induced leukemogeneis: hematopoietic stem cells as the initial target and lineage-specific progenitors as the potential targets for final leukemic transformation. Blood 2009; 113: 1304–1314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kuhn R, Schwenk F, Aguet M, Rajewsky K . Inducible gene targeting in mice. Science 1995; 269: 1427–1429.

    Article  CAS  PubMed  Google Scholar 

  21. Dumortier A, Durham AD, Di Piazza M, Vauclair S, Koch U, Ferrand G et al. Atopic dermatitis-like disease and associated lethal myeloproliferative disorder arise from loss of Notch signaling in the murine skin. PLoS One 2010; 5: e9258.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Raaijmakers MH, Mukherjee S, Guo S, Zhang S, Kobayashi T, Schoonmaker JA et al. Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature 2010; 464: 852–857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jackson EL, Willis N, Mercer K, Bronson RT, Crowley D, Montoya R et al. Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes Dev 2001; 15: 3243–3248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. O'Neil J, Calvo J, McKenna K, Krishnamoorthy V, Aster JC, Bassing CH et al. Activating Notch1 mutations in mouse models of T-ALL. Blood 2006; 107: 781–785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Braun BS, Archard JA, Van Ziffle JA, Tuveson DA, Jacks TE, Shannon K . Somatic activation of a conditional KrasG12D allele causes ineffective erythropoiesis in vivo. Blood 2006; 108: 2041–2044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Weng AP, Ferrando AA, Lee W, Morris JPt, Silverman LB, Sanchez-Irizarry C et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 2004; 306: 269–271.

    Article  CAS  PubMed  Google Scholar 

  27. Sun L, Heerema N, Crotty L, Wu X, Navara C, Vassilev A et al. Expression of dominant-negative and mutant isoforms of the antileukemic transcription factor Ikaros in infant acute lymphoblastic leukemia. Proc Natl Acad Sci U SA 1999; 96: 680–685.

    Article  CAS  Google Scholar 

  28. Du J, Liu Y, Meline B, Kong G, Tan LX, Lo JC et al. Loss of CD44 attenuates aberrant GM-CSF signaling in Kras G12D hematopoietic progenitor/precursor cells and prolongs the survival of diseased animals. Leukemia 2013; 27: 754–757.

    Article  CAS  PubMed  Google Scholar 

  29. Vartanian S, Bentley C, Brauer MJ, Li L, Shirasawa S, Sasazuki T et al. Identification of mutant KRas-dependent phenotypes using a panel of isogenic cell lines. J Biol Chem 2013; 288: 2403–2413.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang Z, Wang Y, Vikis HG, Johnson L, Liu G, Li J et al. Wildtype Kras2 can inhibit lung carcinogenesis in mice. Nat Genet 2001; 29: 25–33.

    Article  CAS  PubMed  Google Scholar 

  31. Matallanas D, Romano D, Al-Mulla F, O'Neill E, Al-Ali W, Crespo P et al. Mutant K-Ras activation of the proapoptotic MST2 pathway is antagonized by wild-type K-Ras. Mol Cell 2011; 44: 893–906.

    Article  CAS  PubMed  Google Scholar 

  32. Grabocka E, Pylayeva-Gupta Y, Jones MJ, Lubkov V, Yemanaberhan E, Taylor L et al. Wild-type H- and N-Ras promote mutant K-Ras-driven tumorigenesis by modulating the DNA damage response. Cancer Cell 2014; 25: 243–256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Romero F, Martinez AC, Camonis J, Rebollo A . Aiolos transcription factor controls cell death in T cells by regulating Bcl-2 expression and its cellular localization. EMBO J 1999; 18: 3419–3430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the Swedish Cancer Society, the Swedish Children’s Cancer Fund and Västra Götalandsregionen (ALF) (to LP and MOB); by a grant from the Swedish Research Council (to MOB); and by grants from the Foundations of Assar Gabrielsson and Sahlgrenska University Hospital (to AS).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L Palmqvist or M O Bergo.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Staffas, A., Karlsson, C., Persson, M. et al. Wild-type KRAS inhibits oncogenic KRAS-induced T-ALL in mice. Leukemia 29, 1032–1040 (2015). https://doi.org/10.1038/leu.2014.315

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2014.315

This article is cited by

Search

Quick links