Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Myeloma

CSNK1α1 mediates malignant plasma cell survival

Abstract

Here we report that targeting casein kinase 1-α1 (CSNK1α1) is a potential novel treatment strategy in multiple myeloma (MM) therapy distinct from proteasome inhibition. CSNK1α1 is expressed in all the tested MM cell lines and patient MM cells, and is not altered during bortezomib-triggered cytotoxicity. Inhibition of CSNK1α1 kinase activity in MM cells with targeted therapy D4476 or small hairpin RNAs triggers cell G0/G1-phase arrest, prolonged G2/M phase and apoptosis. D4476 also induced cytotoxicity in bortezomib-resistant MM cells and enhanced bortezomib-triggered cytotoxicity. CSNK1α1 signaling pathways include CDKN1B, P53 and FADD; gene signatures involved included interferon-α, tumor necrosis factor-α and LIN9. In addition, reduction of Csnk1α1 prevents cMYC/KRAS12V transformation of BaF3 cells independent of interleukin-3. Impartially, reducing Csnk1α1 prevented development of cMYC/KRAS12V-induced plasmacytomas in mice, suggesting that CSNK1α1 may be involved in MM initiation and progression. Our data suggest that targeting CSNK1α1, alone or combined with bortezomib, is a potential novel therapeutic strategy in MM. Moreover, inhibition of CSNK1α1 may prevent the progression of monoclonal gammopathy of undetermined significance to MM.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Palumbo A, Anderson K . Multiple myeloma. N Engl J Medi 2011; 364: 1046–1060.

    Article  CAS  Google Scholar 

  2. Anderson KC . New insights into therapeutic targets in myeloma. Hematology Am Soc Hematol Educ Program 2011; 2011: 184–190.

    Article  PubMed  Google Scholar 

  3. Kane RC, Bross PF, Farrell AT, Pazdur R . Velcade: U.S. FDA approval for the treatment of multiple myeloma progressing on prior therapy. Oncologist 2003; 8: 508–513.

    Article  PubMed  Google Scholar 

  4. Field-Smith A, Morgan GJ, Davies FE .. Ther Clin Risk Manag 2006; 2: 271–279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kuehl WM, Bergsagel PL . Molecular pathogenesis of multiple myeloma and its premalignant precursor. J Clin Invest 2012; 122: 3456–3463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chng WJ, Huang GF, Chung TH, Ng SB, Gonzalez-Paz N, Troska-Price T et al. Clinical and biological implications of MYC activation: a common difference between MGUS and newly diagnosed multiple myeloma. Leukemia 2011; 25: 1026–1035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Delmore JE, Issa GC, Lemieux ME, Rahl PB, Shi J, Jacobs HM et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 2011; 146: 904–917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Trumpp A, Refaeli Y, Oskarsson T, Gasser S, Murphy M, Martin GR et al. c-Myc regulates mammalian body size by controlling cell number but not cell size. Nature 2001; 414: 768–773.

    Article  CAS  PubMed  Google Scholar 

  9. Elyada E, Pribluda A, Goldstein RE, Morgenstern Y, Brachya G, Cojocaru G et al. CKIalpha ablation highlights a critical role for p53 in invasiveness control. Nature 2011; 470: 409–413.

    Article  CAS  PubMed  Google Scholar 

  10. Toyoshima M, Howie HL, Imakura M, Walsh RM, Annis JE, Chang AN et al. Functional genomics identifies therapeutic targets for MYC-driven cancer. Proc Natl Acad Sci USA 2012; 109: 9545–9550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Knippschild U, Gocht A, Wolff S, Huber N, Lohler J, Stoter M . The casein kinase 1 family: participation in multiple cellular processes in eukaryotes. Cell Signal 2005; 17: 675–689.

    Article  CAS  PubMed  Google Scholar 

  12. Dickens NJ, Walker BA, Leone PE, Johnson DC, Brito JL, Zeisig A et al. Homozygous deletion mapping in myeloma samples identifies genes and an expression signature relevant to pathogenesis and outcome. Clin Cancer Res 2010; 16: 1856–1864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhan F, Barlogie B, Arzoumanian V, Huang Y, Williams DR, Hollmig K et al. Gene-expression signature of benign monoclonal gammopathy evident in multiple myeloma is linked to good prognosis. Blood 2007; 109: 1692–1700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Knippschild U, Wolff S, Giamas G, Brockschmidt C, Wittau M, Wurl PU et al. The role of the casein kinase 1 (CK1) family in different signaling pathways linked to cancer development. Onkologie 2005; 28: 508–514.

    CAS  PubMed  Google Scholar 

  15. Huart AS, MacLaine NJ, Meek DW, Hupp TR . CK1alpha plays a central role in mediating MDM2 control of p53 and E2F-1 protein stability. J Biol Chem 2009; 284: 32384–32394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Huart AS, MacLaine NJ, Narayan V, Hupp TR . Exploiting the MDM2-CK1alpha protein-protein interface to develop novel biologics that induce UBL-kinase-modification and inhibit cell growth. PLoS One 2012; 7: e43391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Meek DW, Knippschild U . Posttranslational modification of MDM2. Mol Cancer Res 2003; 1: 1017–1026.

    CAS  PubMed  Google Scholar 

  18. Alappat EC, Feig C, Boyerinas B, Volkland J, Samuels M, Murmann AE et al. Phosphorylation of FADD at serine 194 by CKIalpha regulates its nonapoptotic activities. Mol Cell 2005; 19: 321–332.

    Article  CAS  PubMed  Google Scholar 

  19. Beyaert R, Vanhaesebroeck B, Declercq W, Van Lint J, Vandenabele P, Agostinis P et al. Casein kinase-1 phosphorylates the p75 tumor necrosis factor receptor and negatively regulates tumor necrosis factor signaling for apoptosis. J Biol Chem 1995; 270: 23293–23299.

    Article  CAS  PubMed  Google Scholar 

  20. Desagher S, Osen-Sand A, Montessuit S, Magnenat E, Vilbois F, Hochmann A et al. Phosphorylation of bid by casein kinases I and II regulates its cleavage by caspase 8. Mol Cell 2001; 8: 601–611.

    Article  CAS  PubMed  Google Scholar 

  21. Zhao Y, Qin S, Atangan LI, Molina Y, Okawa Y, Arpawong HT et al. Casein kinase 1alpha interacts with retinoid X receptor and interferes with agonist-induced apoptosis. J Biol Chem 2004; 279: 30844–30849.

    Article  CAS  PubMed  Google Scholar 

  22. Hu Y, Zheng M, Gali R, Tian Z, Topal Gorgun G, Munshi NC et al. A novel rapid-onset high-penetrance plasmacytoma mouse model driven by deregulation of cMYC cooperating with KRAS12V in BALB/c mice. Blood Cancer J 2013; 3: e156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Agnelli L, Mosca L, Fabris S, Lionetti M, Andronache A, Kwee I et al. A SNP microarray and FISH-based procedure to detect allelic imbalances in multiple myeloma: an integrated genomics approach reveals a wide gene dosage effect. Genes Chromosomes Cancer 2009; 48: 603–614.

    Article  CAS  PubMed  Google Scholar 

  24. Rena G, Bain J, Elliott M, Cohen P . D4476, a cell-permeant inhibitor of CK1, suppresses the site-specific phosphorylation and nuclear exclusion of FOXO1a. EMBO Rep 2004; 5: 60–65.

    Article  CAS  PubMed  Google Scholar 

  25. Tillement V, Lajoie-Mazenc I, Casanova A, Froment C, Penary M, Tovar D et al. Phosphorylation of RhoB by CK1 impedes actin stress fiber organization and epidermal growth factor receptor stabilization. Exp Cell Res 2008; 314: 2811–2821.

    Article  CAS  PubMed  Google Scholar 

  26. Moserle L, Indraccolo S, Ghisi M, Frasson C, Fortunato E, Canevari S et al. The side population of ovarian cancer cells is a primary target of IFN-alpha antitumor effects. Cancer Res 2008; 68: 5658–5668.

    Article  CAS  PubMed  Google Scholar 

  27. Shaffer AL, Emre NC, Lamy L, Ngo VN, Wright G, Xiao W et al. IRF4 addiction in multiple myeloma. Nature 2008; 454: 226–231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Reichert N, Wurster S, Ulrich T, Schmitt K, Hauser S, Probst L et al. Lin9, a subunit of the mammalian DREAM complex, is essential for embryonic development, for survival of adult mice, and for tumor suppression. Mol Cell Biol 2010; 30: 2896–2908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sana TR, Janatpour MJ, Sathe M, McEvoy LM, McClanahan TK . Microarray analysis of primary endothelial cells challenged with different inflammatory and immune cytokines. Cytokine 2005; 29: 256–269.

    CAS  PubMed  Google Scholar 

  30. Dauer DJ, Ferraro B, Song L, Yu B, Mora L, Buettner R et al. Stat3 regulates genes common to both wound healing and cancer. Oncogene 2005; 24: 3397–3408.

    Article  CAS  PubMed  Google Scholar 

  31. Chesi M, Nardini E, Brents LA, Schrock E, Ried T, Kuehl WM et al. Frequent translocation t(4;14)(p16.3;q32.3) in multiple myeloma is associated with increased expression and activating mutations of fibroblast growth factor receptor 3. Nat Genet 1997; 16: 260–264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Richelda R, Ronchetti D, Baldini L, Cro L, Viggiano L, Marzella R et al. A novel chromosomal translocation t(4; 14)(p16.3; q32) in multiple myeloma involves the fibroblast growth-factor receptor 3 gene. Blood 1997; 90: 4062–4070.

    CAS  PubMed  Google Scholar 

  33. Tian Z, D'Arcy P, Wang X, Ray A, Tai YT, Hu Y et al. A novel small molecule inhibitor of deubiquitylating enzyme USP14 and UCHL5 induces apoptosis in multiple myeloma and overcomes bortezomib resistance. Blood 2014; 123: 706–716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhu J, Shibasaki F, Price R, Guillemot JC, Yano T, Dotsch V et al. Intramolecular masking of nuclear import signal on NF-AT4 by casein kinase I and MEKK1. Cell 1998; 93: 851–861.

    Article  CAS  PubMed  Google Scholar 

  35. Russell M, Lange-Carter CA, Johnson GL . Direct interaction between Ras and the kinase domain of mitogen-activated protein kinase kinase kinase (MEKK1). J Biol Chem 1995; 270: 11757–11760.

    Article  CAS  PubMed  Google Scholar 

  36. Manni S, Brancalion A, Tubi LQ, Colpo A, Pavan L, Cabrelle A et al. Protein kinase CK2 protects multiple myeloma cells from ER stress-induced apoptosis and from the cytotoxic effect of HSP90 inhibition through regulation of the unfolded protein response. Clin Cancer Res 2012; 18: 1888–1900.

    Article  CAS  PubMed  Google Scholar 

  37. Piazza FA, Ruzzene M, Gurrieri C, Montini B, Bonanni L, Chioetto G et al. Multiple myeloma cell survival relies on high activity of protein kinase CK2. Blood 2006; 108: 1698–1707.

    Article  CAS  PubMed  Google Scholar 

  38. Teoh G, Tai YT, Urashima M, Shirahama S, Matsuzaki M, Chauhan D et al. CD40 activation mediates p53-dependent cell cycle regulation in human multiple myeloma cell lines. Blood 2000; 95: 1039–1046.

    CAS  PubMed  Google Scholar 

  39. Oberg K . The action of interferon alpha on human carcinoid tumours. Semin Cancer Biol 1992; 3: 35–41.

    CAS  PubMed  Google Scholar 

  40. Blade J, Esteve J . Viewpoint on the impact of interferon in the treatment of multiple myeloma: benefit for a small proportion of patients? Med Oncol 2000; 17: 77–84.

    Article  CAS  PubMed  Google Scholar 

  41. Bergsagel PL, Kuehl WM . Molecular pathogenesis and a consequent classification of multiple myeloma. J Clin Oncol 2005; 23: 6333–6338.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Mei Zheng for performing the histological sections; Reddy Gali, who is part of Harvard Catalyst grant member, for his conduction in microarray analysis; the Microarray and the Flow Cytometry Core Facilities at Dana-Farber Cancer Institute for technical support. This study was supported in part by National Institutes of Health Grants P50-100707, P01-78378 and RO1-50947. KCA is an American Cancer Society Clinical Research Professor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K C Anderson.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Song, W., Cirstea, D. et al. CSNK1α1 mediates malignant plasma cell survival. Leukemia 29, 474–482 (2015). https://doi.org/10.1038/leu.2014.202

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2014.202

This article is cited by

Search

Quick links