Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Stem Cells

The role of minor subpopulations within the leukemic blast compartment of AML patients at initial diagnosis in the development of relapse

Abstract

The majority of pediatric and younger adult (<60 years) AML patients achieve complete remission. However, 30–40% of patients relapse and display a dismal outcome. Recently we described a frequent instability of type I/II mutations between diagnosis and relapse. Here, we explored the hypothesis that these mutational shifts originate from clonal selection during treatment/disease progression. Subfractions of blasts from initial diagnosis samples were cell sorted and their mutational profiles were compared with those of the corresponding relapse samples of 7 CD34+ AML patients. At diagnosis, subfractions of the CD45dimCD34+CD38dim/− compartment were heterogeneous in the distribution of mutations, when compared to the whole CD45dimCD34+ blast compartment in 6 out of 7 patients. Moreover, within CD45dimCD34+CD38dim/− fraction of initial samples of 5 of these 6 AML patients, we found evidence for the presence of a minor, initially undetected subpopulation with a specific mutational profile that dominated the bulk of leukemic blasts at relapse. In conclusion, our findings lend support to the AML oligoclonality concept and provide molecular evidence for selection and expansion of a chemo-resistant subpopulation towards development of relapse. These results imply that early detection of pre-existing drug-resistant leukemic subpopulations is crucial for relapse prevention by proper timing of targeted treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Bonnet D, Dick JE . Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997; 3: 730–737.

    Article  CAS  Google Scholar 

  2. Kaspers GJL, Zwaan CM . Pediatric acute myeloid leukemia: towards high-quality cure of all patients. Haematologica 2007; 92: 1519–1532.

    Article  Google Scholar 

  3. Kaspers GJ, Creutzig U . Pediatric acute myeloid leukemia: international progress and future directions. Leukemia 2005; 19: 2025–2029.

    Article  CAS  Google Scholar 

  4. Rubnitz JE, Razzouk BI, Lensing S, Pounds S, Pui CH, Ribeiro RC . Prognostic factors and outcome of recurrence in childhood acute myeloid leukemia. Cancer 2007; 109: 157–163.

    Article  Google Scholar 

  5. Webb DK . Management of relapsed acute myeloid leukaemia. Br J Haematol 1999; 106: 851–859.

    Article  CAS  Google Scholar 

  6. Gilliland DG, Griffin JD . The roles of FLT3 in hematopoiesis and leukemia. Blood 2002; 100: 1532–1542.

    Article  CAS  Google Scholar 

  7. Dohner H, Estey EH, Amadori S, Appelbaum FR, Buchner T, Burnett AK et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood 2010; 115: 453–474.

    Article  Google Scholar 

  8. Grimwade D, Walker H, Oliver F, Wheatley K, Harrison C, Harrison G et al. The importance of diagnostic cytogenetics on outcome in AML: analysis of 1612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children's Leukaemia Working Parties. Blood 1998; 92: 2322–2333.

    CAS  Google Scholar 

  9. Misaghian N, Ligresti G, Steelman LS, Bertrand FE, Basecke J, Libra M et al. Targeting the leukemic stem cell: the Holy Grail of leukemia therapy. Leukemia 2009; 23: 25–42.

    Article  CAS  Google Scholar 

  10. Pierotti MA, Negri T, Tamborini E, Perrone F, Pricl S, Pilotti S . Targeted therapies: the rare cancer paradigm. Mol Oncol 2010; 4: 19–37.

    Article  CAS  Google Scholar 

  11. Estey E, Keating MJ, Pierce S, Stass S . Change in karyotype between diagnosis and first relapse in acute myelogenous leukemia. Leukemia 1995; 9: 972–976.

    CAS  PubMed  Google Scholar 

  12. Kottaridis PD, Gale RE, Langabeer SE, Frew ME, Bowen DT, Linch DC . Studies of FLT3 mutations in paired presentation and relapse samples from patients with acute myeloid leukemia: implications for the role of FLT3 mutations in leukemogenesis, minimal residual disease detection, and possible therapy with FLT3 inhibitors. Blood 2002; 100: 2393–2398.

    Article  CAS  Google Scholar 

  13. Tiesmeier J, Muller-Tidow C, Westermann A, Czwalinna A, Hoffmann M, Krauter J et al. Evolution of FLT3-ITD and D835 activating point mutations in relapsing acute myeloid leukemia and response to salvage therapy. Leuk Res 2004; 28: 1069–1074.

    Article  CAS  Google Scholar 

  14. Schnittger S, Schoch C, Dugas M, Kern W, Staib P, Wuchter C et al. Analysis of FLT3 length mutations in 1003 patients with acute myeloid leukemia: correlation to cytogenetics, FAB subtype, and prognosis in the AMLCG study and usefulness as a marker for the detection of minimal residual disease. Blood 2002; 100: 59–66.

    Article  CAS  Google Scholar 

  15. Cloos J, Goemans BF, Hess CJ, van Oostveen JW, Waisfisz Q, Corthals S et al. Stability and prognostic influence of FLT3 mutations in paired initial and relapsed AML samples. Leukemia 2006; 20: 1217–1220.

    Article  CAS  Google Scholar 

  16. Bachas C, Schuurhuis GJ, Hollink IH, Kwidama ZJ, Goemans BF, Zwaan CM et al. High-frequency type I/II mutational shifts between diagnosis and relapse are associated with outcome in pediatric AML: implications for personalized medicine. Blood 2010; 116: 2752–2758.

    Article  CAS  Google Scholar 

  17. Schnittger S, Schoch C, Kern W, Mecucci C, Tschulik C, Martelli MF et al. Nucleophosmin gene mutations are predictors of favorable prognosis in acute myelogenous leukemia with a normal karyotype. Blood 2005; 106: 3733–3739.

    Article  CAS  Google Scholar 

  18. Chou WC, Tang JL, Lin LI, Yao M, Tsay W, Chen CY et al. Nucleophosmin mutations in de novo acute myeloid leukemia: the age-dependent incidences and the stability during disease evolution. Cancer Res 2006; 66: 3310–3316.

    Article  CAS  Google Scholar 

  19. Hollink IH, Zwaan CM, Zimmermann M, rentsen-Peters TC, Pieters R, Cloos J et al. Favorable prognostic impact of NPM1 gene mutations in childhood acute myeloid leukemia, with emphasis on cytogenetically normal AML. Leukemia 2009; 23: 262–270.

    Article  CAS  Google Scholar 

  20. Hollink IH, van den Heuvel-Eibrink MM, Zimmermann M, Balgobind BV, rentsen-Peters ST, Alders M et al. Clinical relevance of Wilms tumor 1 gene mutations in childhood acute myeloid leukemia. Blood 2009; 113: 5951–5960.

    Article  CAS  Google Scholar 

  21. Pollard JA, Alonzo TA, Gerbing RB, Woods WG, Lange BJ, Sweetser DA et al. FLT3 internal tandem duplication in CD34+/CD33- precursors predicts poor outcome in acute myeloid leukemia. Blood 2006; 108: 2764–2769.

    Article  CAS  Google Scholar 

  22. Hope KJ, Jin L, Dick JE . Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nature Immunology 2004; 5: 738–743.

    Article  CAS  Google Scholar 

  23. Bagg A . Lineage ambiguity, infidelity, and promiscuity in immunophenotypically complex acute leukemias: genetic and morphologic correlates. Am J Clin Pathol 2007; 128: 545–548.

    Article  Google Scholar 

  24. Jordan CT . Unique molecular and cellular features of acute myelogenous leukemia stem cells. Leukemia 2002; 16: 559–562.

    Article  CAS  Google Scholar 

  25. van Rhenen A, Feller N, Kelder A, Moshaver B, Zweegman S, Ossenkoppele G et al. In acute myeloid leukemia both malignant and normal stem cells can be detected in remission bone marrow. Blood 2006; 108: 717A–718A.

    Google Scholar 

  26. Gibson BE, Wheatley K, Hann IM, Stevens RF, Webb D, Hills RK et al. Treatment strategy and long-term results in paediatric patients treated in consecutive UK AML trials. Leukemia 2005; 19: 2130–2138.

    Article  CAS  Google Scholar 

  27. AML Trial Protocols. HOVON – the Haemato Oncology Foundation for Adults in the Netherlands. [Accessed April 24, 2011]. 22-4-2011. Ref Type: Internet Communication.

  28. van Rhenen A, Feller N, Kelder A, Westra AH, Rombouts E, Zweegman S et al. High stem cell frequency in acute myeloid leukemia at diagnosis predicts high minimal residual disease and poor survival. Clinical Cancer Research 2005; 11: 6520–6527.

    Article  CAS  Google Scholar 

  29. van Rhenen A, van Dongen GA, Kelder A, Rombouts EJ, Feller N, Moshaver B et al. The novel AML stem cell associated antigen CLL-1 aids in discrimination between normal and leukemic stem cells. Blood 2007; 110: 2659–2666.

    Article  CAS  Google Scholar 

  30. Goemans BF, Zwaan CM, Miller M, Zimmermann M, Harlow A, Meshinchi S et al. Mutations in KIT and RAS are frequent events in pediatric core-binding factor acute myeloid leukemia. Leukemia 2005; 19: 1536–1542.

    Article  CAS  Google Scholar 

  31. Kramer D, Thunnissen FB, Gallegos-Ruiz MI, Smit EF, Postmus PE, Meijer CJ et al. A fast, sensitive and accurate high resolution melting (HRM) technology-based assay to screen for common K-ras mutations. Cell Oncol 2009; 31: 161–167.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Mullighan CG, Phillips LA, Su X, Ma J, Miller CB, Shurtleff SA et al. Genomic analysis of the clonal origins of relapsed acute lymphoblastic leukemia. Science 2008; 322: 1377–1380.

    Article  CAS  Google Scholar 

  33. Bhatia M, Wang JC, Kapp U, Bonnet D, Dick JE . Purification of primitive human hematopoietic cells capable of repopulating immune-deficient mice. Proc Natl Acad Sci USA 1997; 94: 5320–5325.

    Article  CAS  Google Scholar 

  34. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 1994; 367: 645–648.

    Article  CAS  Google Scholar 

  35. Terstappen LW, Huang S, Safford M, Lansdorp PM, Loken MR . Sequential generations of hematopoietic colonies derived from single nonlineage-committed CD34+. Blood 1991; 77: 1218–1227.

    CAS  PubMed  Google Scholar 

  36. Sarry JE, Murphy K, Perry R, Sanchez PV, Secreto A, Keefer C et al. Human acute myelogenous leukemia stem cells are rare and heterogeneous when assayed in NOD/SCID/IL2Rgammac-deficient mice. J Clin Invest 2011; 121: 384–395.

    Article  CAS  Google Scholar 

  37. Taussig DC, Miraki-Moud F, njos-Afonso F, Pearce DJ, Allen K, Ridler C et al. Anti-CD38 antibody-mediated clearance of human repopulating cells masks the heterogeneity of leukemia-initiating cells. Blood 2008; 112: 568–575.

    Article  CAS  Google Scholar 

  38. Taussig DC, Vargaftig J, Miraki-Moud F, Griessinger E, Sharrock K, Luke T et al. Leukemia-initiating cells from some acute myeloid leukemia patients with mutated nucleophosmin reside in the CD34(−) fraction. Blood 2010; 115: 1976–1984.

    Article  CAS  Google Scholar 

  39. Tiu R, Gondek L, O’Keefe C, Maciejewski JP . Clonality of the stem cell compartment during evolution of myelodysplastic syndromes and other bone marrow failure syndromes. Leukemia 2007; 21: 1648–1657.

    Article  CAS  Google Scholar 

  40. Raghavan M, Lillington DM, Skoulakis S, Debernardi S, Chaplin T, Foot NJ et al. Genome-wide single nucleotide polymorphism analysis reveals frequent partial uniparental disomy due to somatic recombination in acute myeloid leukemias. Cancer Res 2005; 65: 375–378.

    CAS  Google Scholar 

  41. Raghavan M, Smith LL, Lillington DM, Chaplin T, Kakkas I, Molloy G et al. Segmental uniparental disomy is a commonly acquired genetic event in relapsed acute myeloid leukemia. Blood 2008; 112: 814–821.

    Article  CAS  Google Scholar 

  42. Shih LY, Huang CF, Wu JH, Lin TL, Dunn P, Wang PN et al. Internal tandem duplication of FLT3 in relapsed acute myeloid leukemia: a comparative analysis of bone marrow samples from 108 adult patients at diagnosis and relapse. Blood 2002; 100: 2387–2392.

    Article  CAS  Google Scholar 

  43. van der Velden V, Hochhaus A, Cazzaniga G, Szczepanski T, Gabert J, van Dongen JJ . Detection of minimal residual disease in hematologic malignancies by real-time quantitative PCR: principles, approaches, and laboratory aspects. Leukemia 2003; 17: 1013–1034.

    Article  CAS  Google Scholar 

  44. Schittenhelm MM, Yee KW, Kampa KM, Heinrich MC . Tandutinib (MLN518), a potent FLT3 inhibitor, synergizes with cytarabine and/or daunorubicin in a sequence-independent 311571719manner. Blood 2006; 108: abstract# 1374.

  45. Yee KW, Schittenhelm M, O’Farrell AM, Town AR, McGreevey L, Bainbridge T et al. Synergistic effect of SU11248 with cytarabine or daunorubicin on FLT3 ITD-positive leukemic cells. Blood 2004; 104: 4202–4209.

    Article  CAS  Google Scholar 

  46. Furukawa Y, Vu HA, Akutsu M, Odgerel T, Izumi T, Tsunoda S et al. Divergent cytotoxic effects of PKC412 in combination with conventional antileukemic agents in FLT3 mutation-positive versus -negative leukemia cell lines. Leukemia 2007; 21: 1005–1014.

    Article  CAS  Google Scholar 

  47. Grimwade D, Vyas P, Freeman S . Assessment of minimal residual disease in acute myeloid leukemia. Curr Opin Oncol 2010; 22: 656–663.

    Article  Google Scholar 

  48. Langebrake C, Creutzig U, Dworzak M, Hrusak O, Mejstrikova E, Griesinger F et al. Residual disease monitoring in childhood acute myeloid leukemia by multiparameter flow cytometry: the MRD-AML-BFM Study Group. Journal of Clinical Oncology 2006; 24: 3686–3692.

    Article  Google Scholar 

  49. Ossenkoppele GJ, van de Loosdrecht AA, Schuurhuis GJ . Review of the relevance of aberrant antigen expression by flow cytometry in myeloid neoplasms. British Journal of Haematology 2011; 153: 421–436.

    Article  CAS  Google Scholar 

  50. Baer MR, Stewart CC, Dodge RK, Leget G, Sule N, Mrozek K et al. High frequency of immunophenotype changes in acute myeloid leukemia at relapse: implications for residual disease detection (Cancer and Leukemia Group B Study 8361). Blood 2001; 97: 3574–3580.

    Article  CAS  Google Scholar 

  51. Feller N, van der Pol MA, van SA, Weijers GW, Westra AH, Evertse BW et al. MRD parameters using immunophenotypic detection methods are highly reliable in predicting survival in acute myeloid leukaemia. Leukemia 2004; 18: 1380–1390.

    Article  CAS  Google Scholar 

  52. Perea G, Lasa A, Aventin A, Domingo A, Villamor N, Queipo de Llano MP et al. Prognostic value of minimal residual disease (MRD) in acute myeloid leukemia (AML) with favorable cytogenetics [t(8;21) and inv]. Leukemia 2006; 20: 87–94.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Dutch Cancer Society (VU 2005-3666, JC), Stichting KiKa/Children Cancer-free (GJLK), the Netherlands Organization for Scientific Research (YGA) and The Royal Netherlands Academy of Arts and Sciences (YGA). YGA is a recipient of the Royal Netherlands Academy of Arts and Sciences Award for Visiting Professors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Cloos.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bachas, C., Schuurhuis, G., Assaraf, Y. et al. The role of minor subpopulations within the leukemic blast compartment of AML patients at initial diagnosis in the development of relapse. Leukemia 26, 1313–1320 (2012). https://doi.org/10.1038/leu.2011.383

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2011.383

Keywords

This article is cited by

Search

Quick links