Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Lower vitamin D levels are associated with increased risk of early-onset neonatal sepsis in term infants

Subjects

Abstract

Objective:

To evaluate the effect of vitamin D levels on early-onset sepsis (EOS) in term infants.

Study Design:

Fifty term infants with clinical and laboratory findings of EOS (study group) and 50 healthy infants with no signs of clinical/laboratory infection (control group) were enrolled. Blood was drawn at the time of admission during the first 3 postnatal days of life in both groups for measurement of 25-hydroxyvitamin D (25-OHD) levels.

Result:

Maternal and neonatal 25-OHD levels (22.2/8.6 ng ml−1, respectively) in the study group were significantly lower than those of the control group (36.2/19 ng ml−1, respectively, P<0.001). A positive correlation was detected between maternal and neonatal 25-OHD levels. Severe vitamin D deficiency was significantly more common in the sepsis group.

Conclusion:

Lower maternal and neonatal 25-OHD levels are associated with EOS. These data suggest that adequate vitamin D supplementation during pregnancy may be helpful to prevent EOS in term neonates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Sankar JM, Agarwal R, Deorari AK, Paul VK . Sepsis in the newborn. Indian J Pediatr 2008; 75: 261–266.

    Article  Google Scholar 

  2. Ng PC, Lam HS . Diagnostic markers for neonatal sepsis. Curr Opin Pediatr 2006; 18: 125–131.

    Article  Google Scholar 

  3. Lawn JE, Cousens S, Zupan J . For the Lancet Neonatal Survival Steering Team. Neonatal survival 4 million neonatal deaths: When? Where? Why? Lancet 2005; 365: 891–900.

    PubMed  Google Scholar 

  4. Black RE, Cousens S, Johnson HL, Lawn JE, Rudan I, Bassani DG et al. Global, regional, and national causes of child mortality in 2008: a systematic analysis. Lancet 2010; 375: 1969–1987.

    Article  Google Scholar 

  5. Stoll BJ, Hansen NI, Sánchez PJ, Faix RG, Poindexter BB, Van Meurs KP et al. Early onset neonatal sepsis: the burden of group B streptococcal and E. coli disease continues. Pediatrics 2011; 127: 817–826.

    Article  Google Scholar 

  6. Schuchat A, Zywicki SS, Dinsmoor MJ, Mercer B, Romaguera J, O'Sullivan MJ et al. Risk factors and opportunities for prevention of early-onset neonatal sepsis: a multicenter case-control study. Pediatrics 2000; 105: 21–26.

    Article  CAS  Google Scholar 

  7. De Luca HF . Overview of general physiologic features and functions of vitamin D. Am J Clin Nutr 2004; 80: S1689–S1696.

    Article  Google Scholar 

  8. Clancy N, Onwuneme C, Carroll A, McCarthy R, McKenna MJ, Murphy N et al. Vitamin D and neonatal immune function. J Matern Fetal Neonatal Med 2013; 26: 639–646.

    Article  CAS  Google Scholar 

  9. Kempker JA, Han JE, Tangpricha V, Ziegler TR, Martin GS . Vitamin D and sepsis: an emerging relationship. Dermatoendocrinol 2012; 4: 101–108.

    Article  CAS  Google Scholar 

  10. Muhe L, Lulseged S, Mason KE, Simoes EA . Case control study of the role of nutritional rickets in the risk of developing pneumonia in Ethiopian children. Lancet 1997; 349: 1801–1804.

    Article  CAS  Google Scholar 

  11. Najada AS, Habashneh MS, Khader M . The frequency of nutritional rickets among hospitalized infants and its relation to respiratory diseases. J Trop Pediatr 2004; 50: 364–368.

    Article  Google Scholar 

  12. Wayse V, Yousafzai A, Mogale K, Filteau S . Association of subclinical vitamin D deficiency with severe acute lower respiratory infection in Indian children under 5 y. Eur J Clin Nutr 2004; 58: 563–567.

    Article  CAS  Google Scholar 

  13. Karatekin G, Kaya A, Salihoglu O, Balci H, Nuhoglu A . Association of subclinical vitamin D deficiency in newborns with acute lower respiratory infection and their mothers. Eur J Clin Nutr 2009; 63: 473–477.

    Article  CAS  Google Scholar 

  14. Belderbos ME, Houben ML, Wilbrink B, Lentjes E, Bloemen EM, Kimpen JL et al. Cord blood vitamin D deficiency is associated with respiratory syncthial virus bronchiolitis. Pediatrics 2011; 127: e1513.

    Article  Google Scholar 

  15. Gitto E, Karbownik M, Reiter RJ, Tan DX, Cuzzocrea S, Chiurazzi P et al. Effects of melatonin treatment in septic newborns. Pediatr Res 2001; 50: 756–760.

    Article  CAS  Google Scholar 

  16. Mulligan ML, Felton SK, Riek AE, Bernal-Mizrachi C . Implications of vitamin D deficiency in pregnancy and lactation. Am J Obstet Gynecol 2010; 202: 429e1–429ee.

    Article  Google Scholar 

  17. Manroe BL, Weinberg AG, Rosenfeld CR, Browne R . The neonatal blood count in health and disease. Reference values for neutrophilic cells. J Pediatr 1979; 95: 89–98.

    Article  CAS  Google Scholar 

  18. Rodwell RL, Leslie AL, Tudehope DI . Early diagnosis of neonatal sepsis using a hematological scoring system. J Pediatr 1988; 112: 761–767.

    Article  CAS  Google Scholar 

  19. Mukhopadhyay S, Puopolo KM . Risk assessment in neonatal early sepsis. Semin Perinat 2012; 36: 408–415.

    Article  Google Scholar 

  20. Gniadecki R, Gajkowska B, Hansen M . 1,25-Dihydroxyvitamin D3 stimulates the assembly of adherens junctions in keratinocytes: involvement of protein kinase C. Endocrinology 1997; 138: 2241–2248.

    Article  CAS  Google Scholar 

  21. Schauber J, Dorschner Ra, Coda Ab, Büchau As, Liu Pt, Kiken D et al. injury enhances tlr2 function and antimicrobial peptide expression through a vitamin D dependent mechanism. J Clin Invest 2007; 117: 803–811.

    Article  CAS  Google Scholar 

  22. Liu PT, Stenger S, Li H, Wenzel L, Tan BH, Krutzik SR et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science 2006; 311: 1770–1773.

    Article  CAS  Google Scholar 

  23. Sadeghi K, Wessner B, Laggner U, Ploder M, Tamandl D, Friedl J et al. Vitamin D3 downregulates monocyte TLR expression and triggers hyporesponsiveness to pathogen-associated molecular patterns. Eur J Immunol 2006; 36: 361–370.

    Article  CAS  Google Scholar 

  24. Levy R, Malech HL . Effect of 1,25-dihydroxyvitamin D3, lipopolysaccharide, or lipoteichoic acid on the expression of NADPH oxidase components in cultured human monocytes. J Immunol 1991; 147: 3066–3071.

    CAS  PubMed  Google Scholar 

  25. Youssef DA, Miller CW, El-Abbassi AM, Cutchins DC, Cutchins C, Grant WB et al. Antimicrobial implications of vitamin D. Dermatoendocrinol 2011; 3: 220–3229.

    Article  CAS  Google Scholar 

  26. Camargo CA Jr, Ingham T, Wickens K, Thadhani R, Silvers KM, Epton MJ et al. Cord-blood 25-hydroxyvitamin D levels and risk of respiratory infection, wheezing, and asthma. Pediatrics 2011; 127: 180–187.

    Article  Google Scholar 

  27. Moller S, Laigaard F, Olgaard K, Hemmingsen C . Effect of 1,25-dihydroxy-vitamin D3 in experimental sepsis. Int J Med Sci 2007; 4: 190–195.

    Article  Google Scholar 

  28. Madden K, Feldman HA, Smith EM, Gordon CM, Keisling SM, Sullivan RM et al. Vitamin D deficiency in critically ill children. Pediatrics 2012; 130: 421–428.

    Article  Google Scholar 

  29. McNally JD, Menon K, Chakraborty P, Fisher L, Williams KA, Al-Dirbashi OY et al. The association of vitamin D status with pediatric critical illness. Pediatrics 2012; 130: 429–436.

    Article  Google Scholar 

  30. Braun A, Chang D, Mahadevappa K, Gibbons FK, Liu Y, Giovannucci E et al. Association of low serum 25-hydroxyvitamin D levels and mortality in the critically ill. Crit Care Med 2011; 39: 671–677.

    Article  CAS  Google Scholar 

  31. Grant WB . Vitamin D supplementation of mother and infant could reduce risk of sepsis in premature infants. Early Hum Dev 2010; 86: 133.

    Article  CAS  Google Scholar 

  32. Grant WB . Vitamin D supplementation could reduce risk of sepsis in infants. World J Pediatr 2010; 6: 185.

    Article  Google Scholar 

  33. Marshall I, Mehta R, Petrova A . Vitamin D in the maternal-fetal-neonatal interface: clinical implications and requirements for supplementation. J Matern Fetal Neonatal Med 2013; 26: 633–638.

    Article  CAS  Google Scholar 

  34. Hatun S, Ozkan B, Bereket A . Vitamin D deficiency and prevention: Turkish experience. Acta Paediar 2011; 100: 1195–1199.

    Article  Google Scholar 

  35. Pehlivan I, Hatun S, Aydogan M, Babaoglu K, Gokalp AS . Maternal vitamin D deficiency and vitamin D supplementation in healthy infants. Turk J Pediatr 2003; 45: 315–320.

    PubMed  Google Scholar 

  36. Institute of Medicine (US) Committee to Review Dietary Reference Intakes for Vitamin D and Calcium. Ross AC, Taylor CL, Yaktine AL, Del Valle HB (eds). Dietary reference intakes for vitamin D and calcium. National Academies Press: Washington DC, 2011.

  37. Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP et al. Evaluation, treatment and prevention of vitamin D deficiency: an Endocrine Society clinical practive guideline. J Clin Endocrin Metabol 2011; 96: 1911–1930.

    Article  CAS  Google Scholar 

  38. Hollis BW, Wagner CL . Vitamin D and pregnancy: skeletal effects, nonskeletal effects, and birth outcomes. Calcif Tissue Int 2013; 92: 128–139.

    Article  CAS  Google Scholar 

  39. Hollis BW, Johnson D, Hulsey TC, Ebeling M, Wagner CL . Vitamin D supplementation during pregnancy: double blind, randomized clinical trial of safety and effectiveness. J Bone Min Res 2011; 26: 2341–2357.

    Article  CAS  Google Scholar 

  40. Wagner CL, McNeil R, Hamilton SA, Winkler J, Rodriguez CC, Warner G et al. A randomized trial of vitamin D supplementation in 2 community health center networks in South Caroline. Am J Obstet Gynecol 2013; 208 (137): e1–13.

    Google Scholar 

  41. Hollis BW, Wagner CL . Vitamin D requirements and supplementation during pregnancy. Curr Opin Endocrinol Diabetes Obes 2011; 18: 371–375.

    Article  CAS  Google Scholar 

  42. Wagner CL, McNeil RB, Johnson DD, Hulsey TC, Ebeling M, Robinson C et al. Health characteristics and outcomes of two randomized vitamin D supplementation trials during pregnancy: a combined analysis. J Steroid Biochem Mol Biol 2013; 136: 313–320.

    Article  CAS  Google Scholar 

  43. Schroth RJ, Lavelle C, Tate R, Bruce S, Billings RJ, Moffatt ME . Prenatal vitamin D and dental caries in infants. Pediatrics 2014; 133: e1277–e1284.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Cetinkaya.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cetinkaya, M., Cekmez, F., Buyukkale, G. et al. Lower vitamin D levels are associated with increased risk of early-onset neonatal sepsis in term infants. J Perinatol 35, 39–45 (2015). https://doi.org/10.1038/jp.2014.146

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jp.2014.146

This article is cited by

Search

Quick links