Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

The gustatory cortex and multisensory integration

Abstract

The central gustatory pathways are part of the brain circuits upon which rest the decision to ingest or reject a food. The quality of food stimuli, however, relies not only on their taste but also on properties such as odor, texture and temperature. We will review anatomical and functional evidence showing that the central gustatory system, in particular its cortical aspect, functions as an integrative circuit in which taste-responsive neurons also show sensitivity to somatosensory and olfactory stimulation. In addition, gustatory pathways are modulated by the internal state of the body, with neuronal responses to tastes changing according to variations in physiological parameters such as gastrointestinal hormones or blood glucose levels. Therefore, rather than working as the receptive field of peripheral taste receptor cells, the central gustatory pathways seem to operate as a multisensory system dedicated to evaluating the biological significance of intra-oral stimuli.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Simon SA . The merging of the senses. Front Neurosci 2008; 2: 13–14.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Breslin PA, Huang L . Human taste: peripheral anatomy, taste transduction, and coding. Adv Otorhinolaryngol 2006; 63: 152–190.

    PubMed  Google Scholar 

  3. Simon SA, de Araujo IE, Gutierrez R, Nicolelis MAL . The neural mechanisms of gustation: a distributed processing code. Nat Rev Neurosci 2006; 7: 890–901.

    Article  CAS  PubMed  Google Scholar 

  4. Breza JM, Curtis KS, Contreras RJ . Temperature modulates taste responsiveness and stimulates gustatory neurons in the rat geniculate ganglion. J Neurophysiol 2006; 95: 674–685.

    Article  PubMed  Google Scholar 

  5. Moskowitz HR . Effects of solution temperature on taste intensity in humans. Physiol Behav 1973; 10: 289–292.

    Article  CAS  PubMed  Google Scholar 

  6. Bartoshuk LM, Rennert K, Rodin J, Stevens JC . Effects of temperature on the perceived sweetness of sucrose. Physiol Behav 1982; 28: 905–910.

    Article  CAS  PubMed  Google Scholar 

  7. Cruz A, Green BG . Thermal stimulation of taste. Nature 2000; 403: 889–892.

    Article  CAS  PubMed  Google Scholar 

  8. Ramsey IS, Delling M, Clapham DE . An introduction to trp channels. Annu Rev Physiol 2006; 68: 619–647.

    Article  CAS  PubMed  Google Scholar 

  9. Roper S . Signal transduction and information processing in mammalian taste buds. Pflugers Archiv 2007; 454: 759–776.

    Article  CAS  PubMed  Google Scholar 

  10. Chandrashekar J, Hoon MA, Ryba NJP, Zuker CS . The receptors and cells for mammalian taste. Nature 2006; 444: 288–294.

    Article  CAS  PubMed  Google Scholar 

  11. Talavera K, Yasumatsu K, Voets T, Droogmans G, Shigemura N, Ninomiya Y et al. Heat activation of TRPM5 underlies thermal sensitivity of sweet taste. Nature 2005; 438: 1022–1025.

    Article  CAS  PubMed  Google Scholar 

  12. Perez CA, Margolskee RF, Kinnamon SC, Ogura T . Making sense with TRP channels: store-operated calcium entry and the ion channel Trpm5 in taste receptor cells. Cell Calcium 2003; 33: 541–549.

    Article  CAS  PubMed  Google Scholar 

  13. Nakamura M, Kurihara K . Temperature dependence of amiloride-sensitive and -insensitive components of rat taste nerve response to NaCl. Brain Res 1988; 444: 159–164.

    Article  CAS  PubMed  Google Scholar 

  14. Ishimaru Y, Inada H, Kubota M, Zhuang H, Tominaga M, Matsunami H . Transient receptor potential family members PKD1L3 and PKD2L1 form a candidate sour taste receptor. Proc Natl Acad Sci 2006; 103: 12569–12574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Huang YA, Maruyama Y, Stimac R, Roper SD . Presynaptic (Type III) cells in mouse taste buds sense sour (acid) taste. J Physiol 2008; 586: 2903–2912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Talavera K, Yasumatsu K, Yoshida R, Margolskee RF, Voets T, Ninomiya Y et al. The taste transduction channel TRPM5 is a locus for bitter-sweet taste interactions. FASEB J 2008; 22: 1343–1355.

    Article  CAS  PubMed  Google Scholar 

  17. Abumrad NA . CD36 may determine our desire for dietary fats. J Clin Invest 2005; 115: 2965–2967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sclafani A, Ackroff K, Abumrad NA . CD36 gene deletion reduces fat preference and intake but not post-oral fat conditioning in mice. Am J Physiol Regul Integr Comp Physiol 2007; 293: R1823–R1832.

    Article  CAS  PubMed  Google Scholar 

  19. Mattes RD . Fat taste and lipid metabolism in humans. Physiol Behav 2005; 86: 691–697.

    Article  CAS  PubMed  Google Scholar 

  20. Kadohisa M, Rolls ET, Verhagen JV . Neuronal representations of stimuli in the mouth: the Primate insular taste cortex, orbitofrontal cortex and amygdala. Chem Senses 2005; 30: 401–419.

    Article  PubMed  Google Scholar 

  21. Small DM, Gerber JC, Mak E, Hummel T . Differential neural responses evoked by orthonasal versus retronasal odorant perception in humans. Neuron 2005; 47: 593–605.

    Article  CAS  PubMed  Google Scholar 

  22. Riera CE, Vogel H, Simon SA, le Coutre J . The capsaicin receptor participates in artificial sweetener aversion. Bioche Biophys Res Comm 2008; 376: 653–657.

    Article  CAS  Google Scholar 

  23. Simon SA, de Araujo IE, Stapleton JA, Nicolelis MAL . Multisensory processing of gustatory stimuli. Chem Percept 2008; 1: 95–102.

    Article  CAS  Google Scholar 

  24. Halling DB, Aracena-Parks P, Hamilton SL . Regulation of voltage-gated Ca2+ channels by calmodulin. Sci STKE 2005; 2005: re15.

    PubMed  Google Scholar 

  25. Roper S . Signaling in the chemosensory systems. Cel Mol Life Sci 2006; 63: 1494–1500.

    Article  CAS  Google Scholar 

  26. Norgren R . Gustatory system. In: Paxinos G (ed). The Rat Nervous System 2nd edn. Academic Press: San Diego, 1995. 1136pp.

    Google Scholar 

  27. Pritchard TC, Hamilton RB, Norgren R . Projections of the parabrachial nucleus in the old world monkey. Exp Neurol 2000; 165: 101–117.

    Article  CAS  PubMed  Google Scholar 

  28. Pritchard TC, Hamilton RB, Norgren R . Neural coding of gustatory information in the thalamus of Macaca mulatta. J Neurophysiol 1989; 61: 1–14.

    Article  CAS  PubMed  Google Scholar 

  29. Scott TR, Plata-Salaman CR . Taste in the monkey cortex. Physiol Behav 1999; 67: 489–511.

    Article  CAS  PubMed  Google Scholar 

  30. Pritchard TC, Hamilton RB, Morse JR, Norgren R . Projections of thalamic gustatory and lingual areas in the monkey, Macaca fascicularis. J Comp Neurol 1986; 244: 213–288.

    Article  CAS  PubMed  Google Scholar 

  31. Jain N, Catania KC, Kass JH . Anatomic correlates of the face and oral cavity representations in the somatosensory cortical area 3b of monkeys. J Comp Neurol 2001; 429: 455–468.

    Article  CAS  PubMed  Google Scholar 

  32. Katz DB, Simon SA, Nicolelis MAL . Taste-specific neuronal ensembles in the gustatory cortex of awake rats. J Neurosci 2002; 22: 1850–1857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Katz DB, Simon SA, Nicolelis MAL . Dynamic and multimodal response of gustatory cortical neurons. J Neurosci 2001; 21: 4478–4489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Small DM, Zald DH, Jones-Gotman M, Zatorre RJ, Pardo JV, Frey S et al. Human cortical gustatory areas: a review of functional neuroimaging data. Neuroreport 1999; 10: 7–14.

    Article  CAS  PubMed  Google Scholar 

  35. O’Doherty J, Rolls ET, Francis S, Bowtell R, McGlone F . Representation of pleasant and aversive taste in the human brain. J Neurophys 2001; 85: 1315–1321.

    Article  Google Scholar 

  36. de Araujo IET, Kringelbach ML, Rolls ET, Hobden P . Representation of Umami taste in the human brain. J Neurophysiol 2003; 90: 313–319.

    Article  CAS  PubMed  Google Scholar 

  37. Schoenfeld MA, Neuer G, Tempelmann C, Ler K, Noesselt T, Hopf J-M et al. Functional magnetic resonance tomography correlates of taste perception in the human primary taste cortex. Neuroscience 2004; 127: 347–353.

    Article  CAS  PubMed  Google Scholar 

  38. Accolla R, Bathellier B, Petersen CH, Carleton A . Differential spatial representation of taste modalities in the rat gustatory cortex. J Neurosci 2007; 27: 1396–1404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. de Araujo IET, Rolls ET, Kringelbach ML, McGlone F, Phillips N . Taste-olfactory convergence, and the representation of the pleasantness of flavour, in the human brain. Eur J Neurosci 2003; 18: 2059–2068.

    Article  PubMed  Google Scholar 

  40. Scott TR, Yaxley S, Sienkiewicz ZJ, Rolls ET . Gustatory responses in the frontal opercular cortex of the alert cynomolgus monkey. J Neurophysiol 1986; 56: 876–890.

    Article  CAS  PubMed  Google Scholar 

  41. Ogawa H . Gustatory cortex of primates: anatomy and physiology. Neurosci Res 1994; 20: 1–13.

    Article  CAS  PubMed  Google Scholar 

  42. de Araujo IE, Rolls ET . Representation in the human brain of food texture and oral fat. J Neurosci 2004; 24: 3086–3093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. de Araujo IET, Kringelbach ML, Rolls ET, McGlone F . Human cortical responses to water in the mouth, and the effects of thirst. J Neurophysiol 2003; 90: 1865–1876.

    Article  PubMed  Google Scholar 

  44. Stapleton JA, Lavine M, Wolpert R, Nicolelis MAL, Simon SA . Rapid taste response in the gustatory cortex during licking. J Neurosci 2006; 26: 4126–4138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Guest S, Grabenhorst F, Essick G, Chen Y, Young M, McGlone F et al. Human cortical representation of oral temperature. Physiol Behav 2007; 92: 975–984.

    Article  CAS  PubMed  Google Scholar 

  46. Simmons WK, Martin A, Barsalou LW . Pictures of appetizing foods activate gustatory cortices for taste and reward. Cereb Cortex 2005; 15: 1602–1608.

    Article  PubMed  Google Scholar 

  47. Nitschke JB, Dixon GE, Sarinopoulos I, Short SJ, Cohen JD, Smith EE et al. Altering expectancy dampens neural response to aversive taste in primary taste cortex. Nat Neurosci 2006; 9: 435–442.

    Article  CAS  PubMed  Google Scholar 

  48. Stapleton JA, Lavine M, Nicolelis MAL, Simon SA . Ensembles of gustatory cortical neurons anticipate and discriminate between tastants in a single lick. Front Neurosci 2007; 1: 161–174.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Veldhuizen MG, Bender G, Constable RT, Small DM . Trying to detect taste in a tasteless solution: modulation of early gustatory cortex by attention to taste. Chem Sens 2007; 32: 569–581.

    Article  Google Scholar 

  50. Oliveira-Maia AJ, Simon SA, Nicolelis MAL . Neural ensemble recordings from Central Gustatory-Reward Pathways in awake and behaving animals. In: Nicolelis MAL (ed). In Methods for Neural Ensemble Recordings. CRC Press Taylor and Francis Group: Boca Raton, 2008. Chapter 10, pp 190–218.

    Google Scholar 

  51. Gutierrez R, Carmena JM, Nicolelis MAL, Simon SA . Orbitofrontal ensemble activity monitors licking and distinguishes among natural rewards. J Neurophysiol 2006; 95: 119–133.

    Article  PubMed  Google Scholar 

  52. Halpern BP, Tapper DN . Taste stimuli: quality coding time. Science 1971; 171: 1256–1258.

    Article  CAS  PubMed  Google Scholar 

  53. Yamamoto T, Matsuo R, Kiyomitsu Y, Kitamura R . Sensory inputs from the oral region to the cerebral cortex in behaving rats: an analysis of unit responses in cortical somatosensory and taste during ingestive behavior. J Neurophysiol 1988; 60: 1303–1321.

    Article  CAS  PubMed  Google Scholar 

  54. Yamamoto T, Matsuo R, Kiyomitsu Y, Kitamura R . Taste responses of cortical neurons in freely ingesting rats. J Neurophysiol 1989; 61: 1244–1258.

    Article  CAS  PubMed  Google Scholar 

  55. Laurienti PJ, Perrault TJ, Stanford TR, Wallace MT, Stein BE . On the use of superadditivity as a metric for characterizing multisensory integration in functional neuroimaging studies. Exp Brain Res 2005; 166: 289–297.

    Article  PubMed  Google Scholar 

  56. Gutierrez R, Tellez LA, Bermudez-Rattoni F . Blockade of cortical muscarinic but not NMDA receptors prevents a novel taste from becoming familiar. Eur J Neurosci 2003; 17: 1556–1562.

    Article  PubMed  Google Scholar 

  57. Rosenblum K, Meiri N, Dudai Y . Taste memory: the role of protein synthesis in gustatory cortex. Behav Neural Biol 1993; 59: 49–56.

    Article  CAS  PubMed  Google Scholar 

  58. Bermudez-Rattoni F . Molecular mechanisms of taste-recognition memory. Nat Rev Neurosci 2004; 5: 209–217.

    Article  CAS  PubMed  Google Scholar 

  59. Accolla R, Carleton A . Internal body state influences topographical plasticity of sensory representations in the rat gustatory cortex. Proc Natl Acad Sci 2008; 105: 4010–4015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Balleine BW, Dickinson A . The effect of lesions of the insular cortex on instrumental conditioning: evidence for a role in incentive memory. J Neurosci 2000; 20: 8954–8964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. De Araujo IE, Gutierrez R, Oliveira-Maia AJ, Pereira Jr A, Nicolelis MAL, Simon SA . Neural ensemble coding of satiety states. Neuron 2006; 51: 483–494.

    Article  CAS  PubMed  Google Scholar 

  62. Small DM, Zatorre RJ . Changes in brain activity related to eating chocolate: from pleasure to aversion. Brain 2001; 124: 1720–1733.

    Article  CAS  PubMed  Google Scholar 

  63. Verhagen JV, Kadohisa M, Rolls ET . Primate insular/opercular taste cortex: neuronal representations of the viscosity, fat texture, grittiness, temperature, and taste of foods. J Neurophysiol 2004; 92: 1685–1699.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The studies hereby reported in which both authors took part were supported in part by NIH grant DC-01065 and grants from Philip Morris USA Inc. and Philip Morris International.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I E de Araujo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Araujo, I., Simon, S. The gustatory cortex and multisensory integration. Int J Obes 33 (Suppl 2), S34–S43 (2009). https://doi.org/10.1038/ijo.2009.70

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2009.70

Keywords

This article is cited by

Search

Quick links