Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Efficient gene transfer in skeletal muscle with AAV-derived bicistronic vector using the FGF-1 IRES

Abstract

IRESs (internal ribosome entry sites) are RNA elements behaving as translational enhancers in conditions of global translation blockade. IRESs are also useful in biotechnological applications as they allow expression of several genes from a single mRNA. Up to now, most IRES-containing vectors use the IRES from encephalomyocarditis virus (EMCV), highly active in transiently transfected cells but long and not flexible in its positioning relative to the gene of interest. In contrast, several IRESs identified in cellular mRNAs are short and flexible and may therefore be advantageous in gene transfer vectors such as those derived from the adeno-associated virus (AAV), where the size of the transgene expression cassette is limited. Here, we have tested bicistronic AAV-derived vectors expressing two luciferase genes separated by the EMCV- or fibroblast growth factor 1 (FGF-1) IRES. We demonstrate that the AAV vector with the FGF-1 IRES, when administrated into the mouse muscle, leads to efficient expression of both transgenes with a stable stoechiometry, for at least 120 days. Interestingly, the bicistronic mRNA containing the FGF-1 IRES leads to transgene expression 10 times superior to that observed with EMCV, in vivo. AAV vectors featuring the FGF-1 IRES may thus be advantageous for gene therapy approaches in skeletal muscle involving coexpression of genes of interest.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Tahara H, Zitvogel L, Storkus WJ, Zeh III HJ, McKinney TG, Schreiber RD et al. Effective eradication of established murine tumors with IL-12 gene therapy using a polycistronic retroviral vector. J Immunol 1995; 154: 6466–6474.

    CAS  PubMed  Google Scholar 

  2. Scappaticci FA, Smith R, Pathak A, Schloss D, Lum B, Cao Y et al. Combination angiostatin and endostatin gene transfer induces synergistic antiangiogenic activity in vitro and antitumor efficacy in leukemia and solid tumors in mice. Mol Ther 2001; 3: 186–196.

    Article  CAS  Google Scholar 

  3. Abmayr S, Gregorevic P, Allen JM, Chamberlain JS . Phenotypic improvement of dystrophic muscles by rAAV/microdystrophin vectors is augmented by IGF1 codelivery. Mol Ther 2005; 12: 441–450.

    Article  CAS  Google Scholar 

  4. Bartoli M, Poupiot J, Vulin A, Fougerousse F, Arandel L, Daniele N et al. AAV-mediated delivery of a mutated myostatin propeptide ameliorates calpain 3 but not alpha-sarcoglycan deficiency. Gene Therapy 2007; 14: 733–740.

    Article  CAS  Google Scholar 

  5. Allera-Moreau C, Chomarat P, Audinot V, Coge F, Gillard M, Martineau Y et al. The use of IRES-based bicistronic vectors allows the stable expression of recombinant G-protein coupled receptors such as NPY5 and histamine 4. Biochimie 2006; 88: 737–746.

    Article  CAS  Google Scholar 

  6. Kozak M . The scanning model for translation: an update. J Cell Biol 1989; 108: 229–241.

    Article  CAS  Google Scholar 

  7. Vagner S, Galy B, Pyronnet S . Irresistible IRES. Attracting the translation machinery to internal ribosome entry sites. EMBO Rep 2001; 2: 893–898.

    Article  CAS  Google Scholar 

  8. de Felipe P . Polycistronic viral vectors. Curr Gene Ther 2002; 2: 355–378.

    Article  CAS  Google Scholar 

  9. Pelletier J, Sonenberg N . Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 1988; 334: 320–325.

    Article  CAS  Google Scholar 

  10. Jang SK, Krausslich HG, Nicklin MJ, Duke GM, Palmenberg AC, Wimmer E . A segment of the 5′ nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. J Virol 1988; 62: 2636–2643.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Ben-Dor I, Itsykson P, Goldenberg D, Galun E, Reubinoff BE . Lentiviral vectors harboring a dual-gene system allow high and homogeneous transgene expression in selected polyclonal human embryonic stem cells. Mol Ther 2006; 14: 255–267.

    Article  CAS  Google Scholar 

  12. Lopez-Lastra M, Gabus C, Darlix JL . Characterization of an internal ribosomal entry segment within the 5′ leader of avian reticuloendotheliosis virus type A RNA and development of novel MLV-REV-based retroviral vectors. Hum Gene Ther 1997; 8: 1855–1865.

    Article  CAS  Google Scholar 

  13. Bonnal S, Boutonnet C, Prado-Lourenco L, Vagner S . IRESdb: the internal ribosome entry site database. Nucleic Acids Res 2003; 31: 427–428.

    Article  CAS  Google Scholar 

  14. Martineau Y, Le Bec C, Monbrun L, Allo V, Chiu IM, Danos O et al. Internal ribosome entry site structural motifs conserved among mammalian fibroblast growth factor 1 alternatively spliced mRNAs. Mol Cell Biol 2004; 24: 7622–7635.

    Article  CAS  Google Scholar 

  15. Creancier L, Morello D, Mercier P, Prats AC . Fibroblast growth factor 2 internal ribosome entry site (IRES) activity ex vivo and in transgenic mice reveals a stringent tissue-specific regulation. J Cell Biol 2000; 150: 275–281.

    Article  CAS  Google Scholar 

  16. Douin V, Bornes S, Creancier L, Rochaix P, Favre G, Prats AC et al. Use and comparison of different internal ribosomal entry sites (IRES) in tricistronic retroviral vectors. BMC Biotechnol 2004; 4: 16.

    Article  Google Scholar 

  17. Fernandez J, Yaman I, Mishra R, Merrick WC, Snider MD, Lamers WH et al. Internal ribosome entry site-mediated translation of a mammalian mRNA is regulated by amino acid availability. J Biol Chem 2001; 276: 12285–12291.

    Article  CAS  Google Scholar 

  18. Holcik M, Sonenberg N . Translational control in stress and apoptosis. Nat Rev Mol Cell Biol 2005; 6: 318–327.

    Article  CAS  Google Scholar 

  19. Kaplitt MG, Feigin A, Tang C, Fitzsimons HL, Mattis P, Lawlor PA et al. Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson's disease: an open label, phase I trial. Lancet 2007; 369: 2097–2105.

    Article  CAS  Google Scholar 

  20. Riviere C, Danos O, Douar AM . Long-term expression and repeated administration of AAV type 1, 2 and 5 vectors in skeletal muscle of immunocompetent adult mice. Gene Therapy 2006; 13: 1300–1308.

    Article  CAS  Google Scholar 

  21. Goncalves MA . Adeno-associated virus: from defective virus to effective vector. Virol J 2005; 2: 43.

    Article  Google Scholar 

  22. Le Bec C, Douar AM . Gene therapy progress and prospects–vectorology: design and production of expression cassettes in AAV vectors. Gene Therapy 2006; 13: 805–813.

    Article  CAS  Google Scholar 

  23. Odom GL, Gregorevic P, Chamberlain JS . Viral-mediated gene therapy for the muscular dystrophies: successes, limitations and recent advances. Biochim Biophys Acta 2007; 1772: 243–262.

    Article  CAS  Google Scholar 

  24. Jiang H, Pierce GF, Ozelo MC, de Paula EV, Vargas JA, Smith P et al. Evidence of multiyear factor IX expression by AAV-mediated gene transfer to skeletal muscle in an individual with severe hemophilia B. Mol Ther 2006; 14: 452–455.

    Article  CAS  Google Scholar 

  25. Sun B, Zhang H, Benjamin Jr DK, Brown T, Bird A, Young SP et al. Enhanced efficacy of an AAV vector encoding chimeric, highly secreted acid alpha-glucosidase in glycogen storage disease type II. Mol Ther 2006; 14: 822–830.

    Article  CAS  Google Scholar 

  26. Chang DS, Su H, Tang GL, Brevetti LS, Sarkar R, Wang R et al. Adeno-associated viral vector-mediated gene transfer of VEGF normalizes skeletal muscle oxygen tension and induces arteriogenesis in ischemic rat hindlimb. Mol Ther 2003; 7: 44–51.

    Article  CAS  Google Scholar 

  27. Huez I, Creancier L, Audigier S, Gensac MC, Prats AC, Prats H . Two independent internal ribosome entry sites are involved in translation initiation of vascular endothelial growth factor mRNA. Mol Cell Biol 1998; 18: 6178–6190.

    Article  CAS  Google Scholar 

  28. Bonnal S, Pileur F, Orsini C, Parker F, Pujol F, Prats AC et al. Heterogeneous nuclear ribonucleoprotein A1 is a novel internal ribosome entry site trans-acting factor that modulates alternative initiation of translation of the fibroblast growth factor 2 mRNA. J Biol Chem 2005; 280: 4144–4153.

    Article  CAS  Google Scholar 

  29. Mitchell SA, Spriggs KA, Coldwell MJ, Jackson RJ, Willis AE . The Apaf-1 internal ribosome entry segment attains the correct structural conformation for function via interactions with PTB and unr. Mol Cell 2003; 11: 757–771.

    Article  CAS  Google Scholar 

  30. Reigadas S, Pacheco A, Ramajo J, de Quinto SL, Martinez-Salas E . Specific interference between two unrelated internal ribosome entry site elements impairs translation efficiency. FEBS Lett 2005; 579: 6803–6808.

    Article  CAS  Google Scholar 

  31. Junemann C, Song Y, Bassili G, Goergen D, Henke J, Niepmann M . Picornavirus internal ribosome entry site elements can stimulate translation of upstream genes. J Biol Chem 2007; 282: 132–141.

    Article  Google Scholar 

  32. Meng Z, King PH, Nabors LB, Jackson NL, Chen CY, Emanuel PD et al. The ELAV RNA-stability factor HuR binds the 5′-untranslated region of the human IGF-IR transcript and differentially represses cap-dependent and IRES-mediated translation. Nucleic Acids Res 2005; 33: 2962–2979.

    Article  CAS  Google Scholar 

  33. Galy B, Creancier L, Prado-Lourenco L, Prats AC, Prats H . p53 directs conformational change and translation initiation blockade of human fibroblast growth factor 2 mRNA. Oncogene 2001; 20: 4613–4620.

    Article  CAS  Google Scholar 

  34. Fan L, Drew J, Dunckley MG, Owen JS, Dickson G . Efficient coexpression and secretion of anti-atherogenic human apolipoprotein AI and lecithin-cholesterol acyltransferase by cultured muscle cells using adeno-associated virus plasmid vectors. Gene Therapy 1998; 5: 1434–1440.

    Article  CAS  Google Scholar 

  35. Okada H, Miyamura K, Itoh T, Hagiwara M, Wakabayashi T, Mizuno M et al. Gene therapy against an experimental glioma using adeno-associated virus vectors. Gene Therapy 1996; 3: 957–964.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful for technical assistance to Y Barreira (IFR31 animal facility), to JJ Maoret (IFR31 platform of molecular biology) and MJ Fouque. This work was supported by grants from Association Française contre les Myopathies (AFM), Fondation de l'Avenir Association pour la Recherche sur le Cancer (ARC), Conseil Régional Midi-Pyrénées, European Commission FP5 (QOL-2000-3.1.2, consortium CONTEXTH contract QLRT-2000-00721) and the French Ministery of Research (decision No 01H0387).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A-C Prats.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delluc-Clavières, A., Le Bec, C., Van den Berghe, L. et al. Efficient gene transfer in skeletal muscle with AAV-derived bicistronic vector using the FGF-1 IRES. Gene Ther 15, 1090–1098 (2008). https://doi.org/10.1038/gt.2008.49

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2008.49

Keywords

This article is cited by

Search

Quick links