Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Extracellular calcium elicits feedforward regulation of the Toll-like receptor-triggered innate immune response

Abstract

Despite the expanding knowledge on feedback regulation of Toll-like receptor (TLR) signaling, the feedforward regulation of TLR signaling for the proper innate response to invading microbes is not fully understood. Here, we report that extracellular calcium can coordinate the activation of the small GTPases Ras and Ras-proximate-1 (Rap1) upon TLR stimulation which favors activation of macrophages through a feedforward mechanism. We show that different doses of TLR agonists can trigger different levels of cytokine production, which can be potentiated by extracellular calcium but are impaired by the chelating reagent ethylene glycol tetraacetic acid (EGTA) or by knockdown of stromal interaction molecule 1 (STIM1). Upon TLR engagement, GTP-bound Ras levels are increased and GTP-bound Rap1 is decreased, which can be reversed by EGTA-mediated removal of extracellular calcium. Furthermore, we demonstrate that Rap1 knockdown rescues the inhibitory effects of EGTA on the TLR-triggered innate response. Examination of the TLR signaling pathway reveals that extracellular calcium may regulate the TLR response via feedforward activation of the extracellular signal-regulated kinase signaling pathway. Our data suggest that an influx of extracellular calcium, mediated by STIM1-operated calcium channels, may transmit the information about the intensity of extracellular TLR stimuli to initiate innate responses at an appropriate level. Our study may provide mechanistic insight into the feedforward regulation of the TLR-triggered innate immune response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Kawai T, Akira S . The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 2010; 11: 373–384.

    Article  CAS  PubMed  Google Scholar 

  2. Kondo T, Kawai T, Akira S . Dissecting negative regulation of Toll-like receptor signaling. Trends Immunol 2012; 33: 449–458.

    Article  CAS  PubMed  Google Scholar 

  3. O’Neill LA, Golenbock D, Bowie AG . The history of Toll-like receptors – redefining innate immunity. Nat Rev Immunol 2013; 13: 453–460.

    Article  PubMed  Google Scholar 

  4. Arthur JS, Ley SC . Mitogen-activated protein kinases in innate immunity. Nat Rev Immunol 2013; 13: 679–692.

    Article  CAS  PubMed  Google Scholar 

  5. Mor A, Philips MR . Compartmentalized Ras/MAPK signaling. Annu Rev Immunol 2006; 24: 771–800.

    Article  CAS  PubMed  Google Scholar 

  6. Smith-Garvin JE, Koretzky GA, Jordan MS . T cell activation. Annu Rev Immunol 2009; 27: 591–619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Xu H, An H, Yu Y, Zhang M, Qi R, Cao X . Ras participates in CpG oligodeoxynucleotide signaling through association with toll-like receptor 9 and promotion of interleukin-1 receptor-associated kinase/tumor necrosis factor receptor-associated factor 6 complex formation in macrophages. J Biol Chem 2003; 278: 36334–36340.

    Article  CAS  PubMed  Google Scholar 

  8. Stork PJ, Dillon TJ . Multiple roles of Rap1 in hematopoietic cells: complementary versus antagonistic functions. Blood 2005; 106: 2952–2961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Carey KD, Dillon TJ, Schmitt JM, Baird AM, Holdorf AD, Straus DB et al. CD28 and the tyrosine kinase lck stimulate mitogen-activated protein kinase activity in T cells via inhibition of the small G protein Rap1. Mol Cell Biol 2000; 20: 8409–8419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ishida D, Yang H, Masuda K, Uesugi K, Kawamoto H, Hattori M et al. Antigen-driven T cell anergy and defective memory T cell response via deregulated Rap1 activation in SPA-1-deficient mice. Proc Natl Acad Sci USA 2003; 100: 10919–10924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dillon TJ, Carey KD, Wetzel SA, Parker DC, Stork PJ . Regulation of the small GTPase Rap1 and extracellular signal-regulated kinases by the costimulatory molecule CTLA-4. Mol Cell Biol 2005; 25: 4117–4128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tang S, Chen T, Yu Z, Zhu X, Yang M, Xie B et al. RasGRP3 limits Toll-like receptor-triggered inflammatory response in macrophages by activating Rap1 small GTPase. Nat Commun 2014; 5: 4657 .

    Article  CAS  PubMed  Google Scholar 

  13. Sebzda E, Bracke M, Tugal T, Hogg N, Cantrell DA . Rap1A positively regulates T cells via integrin activation rather than inhibiting lymphocyte signaling. Nat Immunol 2002; 3: 251–258.

    Article  CAS  PubMed  Google Scholar 

  14. York RD, Molliver DC, Grewal SS, Stenberg PE, McCleskey EW, Stork PJ . Role of phosphoinositide 3-kinase and endocytosis in nerve growth factor-induced extracellular signal-regulated kinase activation via Ras and Rap1. Mol Cell Biol 2000; 20: 8069–8083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kao S, Jaiswal RK, Kolch W, Landreth GE . Identification of the mechanisms regulating the differential activation of the MAPK cascade by epidermal growth factor and nerve growth factor in PC12 cells. J Biol Chem 2001; 276: 18169–18177.

    Article  CAS  PubMed  Google Scholar 

  16. Guo FF, Kumahara E, Saffen D . A CalDAG-GEFI/Rap1/B-Raf cassette couples M(1) muscarinic acetylcholine receptors to the activation of ERK1/2. J Biol Chem 2001; 276: 25568–25581.

    Article  CAS  PubMed  Google Scholar 

  17. Garcia J, de Gunzburg J, Eychène A, Gisselbrecht S, Porteu F . Thrombopoietin-mediated sustained activation of extracellular signal-regulated kinase in UT7-Mpl cells requires both Ras-Raf-1- and Rap1-B-Raf-dependent pathways. Mol Cell Biol 2001; 21: 2659–2670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Christian SL, Lee RL, McLeod SJ, Burgess AE, Li AH, Dang-Lawson M et al. Activation of the Rap GTPases in B lymphocytes modulates B cell antigen receptor-induced activation of Akt but has no effect on MAPK activation. J Biol Chem 2003; 278: 41756–41767.

    Article  CAS  PubMed  Google Scholar 

  19. Enserink JM, Christensen AE, de Rooij J, van Triest M, Schwede F, Genieser HG et al. A novel Epac-specific cAMP analogue demonstrates independent regulation of Rap1 and ERK. Nat Cell Biol 2002; 4: 901–906.

    Article  CAS  PubMed  Google Scholar 

  20. Hogan PG, Lewis RS, Rao A . Molecular basis of calcium signaling in lymphocytes: STIM and ORAI. Annu Rev Immunol 2010; 28: 491–533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Feske S, Skolnik EY, Prakriya M . Ion channels and transporters in lymphocyte function and immunity. Nat Rev Immunol 2012; 12: 532–547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Limnander A, Depeille P, Freedman TS, Liou J, Leitges M, Kurosaki T et al. STIM1, PKC-δ and RasGRP set a threshold for proapoptotic Erk signaling during B cell development. Nat Immunol 2011; 12: 425–433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sharma S, Quintana A, Findlay GM, Mettlen M, Baust B et al. An siRNA screen for NFAT activation identifies septins as coordinators of store-operated Ca2+ entry. Nature 2013; 499: 238–242.

    Article  CAS  PubMed  Google Scholar 

  24. Yang M, Wang C, Zhu X, Tang S, Shi L, Cao X et al. E3 ubiquitin ligase CHIP facilitates Toll-like receptor signaling by recruiting and polyubiquitinating Src and atypical PKC{zeta}. J Exp Med 2011; 208: 2099–2112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vig M, Beck A, Billingsley JM, Lis A, Parvez S, Peinelt C et al. CRACM1 multimers form the ion-selective pore of the CRAC channel. Curr Biol 2006; 16: 2073–2079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dai Y, Walker SA, de Vet E, Cook S, Welch HC, Lockyer PJ . Ca2+-dependent monomer and dimer formation switches CAPRI Protein between Ras GTPase-activating protein (GAP) and RapGAP activities. J Biol Chem 2011; 286: 19905–19916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Caron E, Self AJ, Hall A . The GTPase Rap1 controls functional activation of macrophage integrin alphaMbeta2 by LPS and other inflammatory mediators. Curr Biol 2000; 10: 974–978.

    Article  CAS  PubMed  Google Scholar 

  28. Schmidt A, Caron E, Hall A . Lipopolysaccharide-induced activation of beta2-integrin function in macrophages requires Irak kinase activity, p38 mitogen- activated protein kinase, and the Rap1 GTPase. Mol Cell Biol 2001; 21: 438–448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cherfils J, Zeghouf M . Regulation of small GTPases by GEFs, GAPs, and GDIs. Physiol Rev 2013; 93: 269–309.

    Article  CAS  PubMed  Google Scholar 

  30. Bos JL, Rehmann H, Wittinghofer A . GEFs and GAPs: critical elements in the control of small G proteins. Cell 2007; 129: 865–877.

    Article  CAS  PubMed  Google Scholar 

  31. Geppert TD, Whitehurst CE, Thompson P, Beutler B . Lipopolysaccharide signals activation of tumor necrosis factor biosynthesis through the ras/raf-1/MEK/MAPK pathway. Mol Med 1994; 1: 93–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Luo SF, Wang CC, Chiu CT, Chien CS, Hsiao LD, Lin CH et al. Lipopolysaccharide enhances bradykinin-induced signal transduction via activation of Ras/Raf/MEK/MAPK in canine tracheal smooth muscle cells. Br J Pharmacol 2000; 130: 1799–1808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schmid MC, Avraamides CJ, Dippold HC, Franco I, Foubert P, Ellies LG et al. Receptor tyrosine kinases and TLR/IL1Rs unexpectedly activate myeloid cell PI3kγ, a single convergent point promoting tumor inflammation and progression. Cancer Cell 2011; 19: 715–727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kogut MH, Genovese KJ, He H . Flagellin and lipopolysaccharide stimulate the MEK-ERK signaling pathway in chicken heterophils through differential activation of the small GTPases, Ras and Rap1. Mol Immunol 2007; 44: 1729–1736.

    Article  CAS  PubMed  Google Scholar 

  35. Ratner AJ, Bryan R, Weber A, Nguyen S, Barnes D, Pitt A et al. Cystic fibrosis pathogens activate Ca2+-dependent mitogen-activated protein kinase signaling pathways in airway epithelial cells. J Biol Chem 2001; 276: 19267–19275.

    Article  CAS  PubMed  Google Scholar 

  36. Martin L, Pingle SC, Hallam DM, Rybak LP, Ramkumar V . Activation of the adenosine A3 receptor in RAW 264.7 cells inhibits lipopolysaccharide-stimulated tumor necrosis factor-alpha release by reducing calcium-dependent activation of nuclear factor-kappaB and extracellular signal-regulated kinase 1/2. J Pharmacol Exp Ther 2006; 316: 71–78.

    Article  CAS  PubMed  Google Scholar 

  37. Buyck JM, Verriere V, Benmahdi R, Higgins G, Guery B, Matran R et al. P. aeruginosa LPS stimulates calcium signaling and chloride secretion via CFTR in human bronchial epithelial cells. J Cyst Fibros 2013; 12: 60–67.

    Article  CAS  PubMed  Google Scholar 

  38. Kenny EF, Quinn SR, Doyle SL, Vink PM, van Eenennaam H, O’Neill LA . Bruton’s tyrosine kinase mediates the synergistic signalling between TLR9 and the B cell receptor by regulating calcium and calmodulin. PLoS One 2013; 8: e74103 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shintani Y, Drexler HC, Kioka H, Terracciano CM, Coppen SR, Imamura H et al. Toll-like receptor 9 protects non-immune cells from stress by modulating mitochondrial ATP synthesis through the inhibition of SERCA2. EMBO Rep 2014; 15: 438–445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chauhan A, Sun Y, Pani B, Quenumzangbe F, Sharma J, Singh BB et al. Helminth induced suppression of macrophage activation is correlated with inhibition of calcium channel activity. PLoS One 2014; 9: e101023 .

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ohmori Y, Hamilton TA . Ca2+ and calmodulin selectively regulate lipopolysaccharide-inducible cytokine mRNA expression in murine peritoneal macrophages. J Immunol 1992; 148: 538–545.

    CAS  PubMed  Google Scholar 

  42. Park YC, Jun CD, Kang HS, Kim HD, Kim HM, Chung HT . Role of intracellular calcium as a priming signal for the induction of nitric oxide synthesis in murine peritoneal macrophages. Immunology 1996; 87: 296–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chen BC, Hsieh SL, Lin WW . Involvement of protein kinases in the potentiation of lipopolysaccharide-induced inflammatory mediator formation by thapsigargin in peritoneal macrophages. J Leukoc Biol 2001; 69: 280–288.

    CAS  PubMed  Google Scholar 

  44. Luo SF, Wang CC, Chien CS, Hsiao LD, Yang CM . Induction of cyclooxygenase-2 by lipopolysaccharide in canine tracheal smooth muscle cells: involvement of p42/p44 and p38 mitogen-activated protein kinases and nuclear factor-kappaB pathways. Cell Signal 2003; 15: 497–509.

    Article  CAS  PubMed  Google Scholar 

  45. Luo SF, Lin WN, Yang CM, Lee CW, Liao CH, Leu YL et al. Induction of cytosolic phospholipase A2 by lipopolysaccharide in canine tracheal smooth muscle cells: involvement of MAPKs and NF-kappaB pathways. Cell Signal 2006; 18: 1201–1211.

    Article  CAS  PubMed  Google Scholar 

  46. Liu X, Yao M, Li N, Wang C, Zheng Y, Cao X . CaMKII promotes TLR-triggered proinflammatory cytokine and type I interferon production by directly binding and activating TAK1 and IRF3 in macrophages. Blood 2008; 112: 4961–4970.

    Article  CAS  PubMed  Google Scholar 

  47. Ziegler S, Gartner K, Scheuermann U, Zoeller T, Hantzschmann J, Over B et al. Ca(2+)-related signaling events influence TLR9-induced IL-10 secretion in human B cells. Eur J Immunol 2014; 44: 1285–1298.

    Article  CAS  PubMed  Google Scholar 

  48. Baba Y, Nishida K, Fujii Y, Hirano T, Hikida M, Kurosaki T . Essential function for the calcium sensor STIM1 in mast cell activation and anaphylactic responses. Nat Immunol 2008; 9: 81–88.

    Article  CAS  PubMed  Google Scholar 

  49. Oh-Hora M, Yamashita M, Hogan PG, Sharma S, Lamperti E, Chung W et al. Dual functions for the endoplasmic reticulum calcium sensors STIM1 and STIM2 in T cell activation and tolerance. Nat Immunol 2008; 9: 432–443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Braun A, Gessner JE, Varga-Szabo D, Syed SN, Konrad S, Stegner D et al. STIM1 is essential for Fcgamma receptor activation and autoimmune inflammation. Blood 2009; 113: 1097–1104.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Key Basic Research Program of China (2010CB911903 and 2013CB530502), the National Natural Science Foundation of China (81172851, 81222039, 31270944, and 31370902), and the National High Technology Research and Development Program (2012AA020900). We thank Dr. Xingguang Liu for helpful discussion and assistance with manuscript writing, and Ms. Mei Jin and Ms. Hao Shen for their excellent technical assistance.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare they have no financial conflicts of interests.

Additional information

Supplementary information of this article can be found on Cellular & Molecular Immunology website: http://www.nature.com/cmi.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, S., Chen, T., Yang, M. et al. Extracellular calcium elicits feedforward regulation of the Toll-like receptor-triggered innate immune response. Cell Mol Immunol 14, 180–191 (2017). https://doi.org/10.1038/cmi.2015.59

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2015.59

Keywords

This article is cited by

Search

Quick links