Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Mitochondrially targeted wild-type p53 suppresses growth of mutant p53 lymphomas in vivo

Abstract

The complex apoptotic functions of the p53 tumor suppressor are central to its antineoplastic activity in vivo. Besides its well-known action as a transcriptional activator of apoptotic genes, p53 exerts a direct proapoptotic role at the mitochondria via protein–protein interactions with Bcl2 family members, thus executing the shortest known circuitry of p53 death signaling. We recently reported that exclusive delivery of p53 to mitochondria exerts a significant in vivo tumor suppressor activity in p53-null lymphomas. However, it was unknown whether mitochondrially targeted p53 has suppressor activities in tumors harboring missense mutants, which constitute the vast majority of p53 alterations in human tumors. Here, we show that targeting p53 to mitochondria does confer a significant growth disadvantage in B-lymphomas expressing various point mutants of p53, resulting in efficient apoptosis induction in vitro and in vivo in mice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Arima Y, Nitta M, Kuninaka S, Zhang D, Fujiwara T, Taya Y et al. (2005). J Biol Chem 280: 19166–19176.

  • Baylin SB, Ohm JE . (2006). Nat Rev Cancer 6: 107–116.

  • Chen L, Willis SN, Wei A, Smith BJ, Fletcher JI, Hinds MG et al. (2005). Mol Cell 17: 393–403.

  • Chipuk JE, Bouchier-Hayes L, Kuwana T, Newmeyer DD, Green DR . (2005). Science 309: 1732–1735.

  • Chipuk JE, Kuwana T, Bouchier-Hayes L, Droin NM, Newmeyer DD, Schuler M et al. (2004). Science 303: 1010–1014.

  • Dumont P, Leu JI, Della Pietra III AC, George DL, Murphy M . (2003). Nat Genet 33: 357–365.

  • Eischen CM, Weber JD, Roussel MF, Sherr CJ, Cleveland JL . (1999). Genes Dev 13: 2658–2669.

  • Erster S, Mihara M, Kim RH, Petrenko O, Moll UM . (2004). Mol Cell Biol 24: 6728–6741.

  • Erster S, Moll UM . (2005). Biochem Biophys Res Commun 331: 843–850.

  • Essmann F, Pohlmann S, Gillissen B, Daniel PT, Schulze-Osthoff K, Janicke RU . (2005). J Biol Chem 280: 37169–37177.

  • Harris AW, Pinkert CA, Crawford M, Langdon WY, Brinter RL, Adams JM . (1988). J Exp Med 167: 353–371.

  • Herman JG, Baylin SB . (2003). N Engl J Med 349: 2042–2054.

  • Hsu YT, Wolter KG, Youle RJ . (1997). Proc Natl Acad Sci USA 94: 3668–3672.

  • Kuwana T, Bouchier-Hayes L, Chipuk JE, Bonzon C, Sullivan BA, Green DR et al. (2005). Mol Cell 17: 525–535.

  • Leu JI, Dumont P, Hafey M, Murphy ME, George DL . (2004). Nat Cell Biol 6: 443–450.

  • Li PF, Dietz R, von Harsdorf R . (1999). EMBO J 18: 6027–6036.

  • Lim DS, Bae SM, Kwak SY, Park EK, Kim JK, Han SJ et al. (2006). Hum Gene Ther 17: 347–352.

  • Marchenko ND, Zaika A, Moll UM . (2000). J Biol Chem 275: 16202–16212.

  • Mihara M, Erster S, Zaika A, Petrenko O, Chittenden T, Pancoska P et al. (2003). Mol Cell 11: 577–590.

  • Nemajerova A, Wolff S, Petrenko O, Moll UM . (2005). FEBS Lett 579: 6079–6083.

  • Olivier M, Eeles R, Hollstein M, Khan MA, Harris CC, Hainaut P . (2002). Hum Mutat 19: 607–614.

  • Peng Z . (2005). Hum Gene Ther 16: 1016–1027.

  • Petros AM, Gunasekera A, Xu N, Olejniczak ET, Fesik SW . (2004). FEBS Lett 28073: 1–4.

  • Roth JA . (2006). Expert Opin Biol Ther 6: 55–61.

  • Sansome C, Zaika A, Marchenko ND, Moll UM . (2001). FEBS Lett 488: 110–115.

  • Sauthoff H, Pipiya T, Chen S, Heitner S, Cheng J, Huang YQ et al. (2006). Cancer Gene Ther doi: 10.1038/sj.cgt.7700936.

  • Schmitt CA, Rosenthal CT, Lowe SW . (2000). Nat Med 6: 1029–1035.

  • Talos F, Petrenko O, Mena P, Moll UM . (2005). Cancer Res 65: 9971–9981.

  • Yin S, Goodrich DW . (2006). Int J Oncol 28: 781–785.

  • Zhao Y, Chaiswing L, Velez JM, Batinic-Haberle I, Colburn NH, Oberley TD et al. (2005). Cancer Res 65: 3745–3750.

Download references

Acknowledgements

We thank Patricio Mena for animal care and Christine Eischen for providing two lymphoma isolates. This work was supported by grants from the National Cancer Institute and Philip Morris USA Inc./Philip Morris International to UMM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U M Moll.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palacios, G., Moll, U. Mitochondrially targeted wild-type p53 suppresses growth of mutant p53 lymphomas in vivo. Oncogene 25, 6133–6139 (2006). https://doi.org/10.1038/sj.onc.1209641

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209641

Keywords

This article is cited by

Search

Quick links