Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Paper
  • Published:

High-density lipoprotein apolipoprotein A-I kinetics in obese insulin resistant patients. An in vivo stable isotope study

Abstract

AIMS/HYPOTHESIS: Mechanisms responsible for the decreased high-density lipoprotein (HDL) cholesterol level associated with insulin resistance in obese patients are not clearly understood. To determine the influence of insulin resistance at an early stage on HDL metabolism, we performed a stable isotope kinetic study of apolipoprotein (apo) A-I, in five obese insulin resistant women with normal fasting triglycerides and without impaired glucose tolerance, and in five age-matched control women.

METHODS: Each subject received a 16 h constant infusion of L-[1-13C]leucine at 0.7 mg/kg/h following a primed bolus of 0.7 mg/kg.

RESULTS: ApoA-I fractional catabolic rate (FCR) was significantly increased in insulin-resistant women compared to controls (0.316±0.056 vs 0.210±0.040 per day, P<0.01), indicating a significant 50% increase of apoA-I catabolism, leading to an important reduction of plasma apoA-I residence time (3.25±0.59 vs 4.92±1.11, P<0.01). ApoA-I production rate tended to be higher in insulin resistant women than in controls (364±77 vs 258±60 mg/l/day, P=0.13), but the difference was not statistically significant. ApoA-I FCR was correlated with triglycerides during the fed state (r=0.69; P=0.026) and HDL triglycerides–esterified cholesterol ratio (r=0.73; P=0.016), suggesting that alteration of apoA-I metabolism in insulin resistance may be partly related to HDL enrichment in triglycerides.

CONCLUSIONS: Our kinetic study shows that patients, at an early stage of insulin resistance (without impaired glucose tolerance nor fasting hypertriglyceridaemia), already have a significant alteration of apoA-I metabolism (increased apoA-I catabolism), which is consistent with the increased risk of atherosclerosis in this population.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Ducimetière P, Eschwege E, Papoz L, Richard JL, Claude JR, Rosselin G . Relationship of plasma insulin level to the incidence of myocardial infarction and coronary heart disease mortality in middle-aged population Diabetologia 1980 19: 205–210.

    Article  Google Scholar 

  2. Golay A, Zech L, Shi MZ, Chiou YAM, Reaven GM, Chen YDI . High density lipoprotein (HDL) metabolism in noninsulin-dependent diabetes mellitus: measurement of HDL turnover using tritiated HDL J Clin Endocrinol Metab 1987 65: 512–518.

    Article  CAS  Google Scholar 

  3. Frenais R, Ouguerram K, Maugeais C, Mahot P, Maugere P, Krempf M, Magot T . High density lipoprotein apolipoprotein A-I kinetics in NIDDM: a stable isotope study Diabetologia 1997 40: 578–583.

    Article  CAS  Google Scholar 

  4. Brinton EA, Eisenberg S, Breslow JL . Increased apoA-I and apoA-II fractional catabolic rate in patients with low high density lipoprotein-cholesterol levels with or without hypertriglyceridemia J Clin Invest 1991 87: 536–544.

    Article  CAS  Google Scholar 

  5. Matthews DR, Hosker JP, Rudenski BA, Naylor BA, Treacher DF, Turner RC . Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man Diabetologia 1985 28: 412–419.

    Article  CAS  Google Scholar 

  6. Shen DC, Shien SM, Fuh MMT, Wu DA, Chen YDI, Reaven GM . Resistance to insulin-stimulated-glucose uptake in patients with hypertension J Clin Endocrinol Metab 1988 66: 580–583.

    Article  CAS  Google Scholar 

  7. Taskinen MR, Packard CJ, Sheperd J . Effect of insulin therapy on metabolic fate of apolipoprotein B-containing lipoproteins in NIDDM Diabetes 1990 39: 1017–1027.

    Article  CAS  Google Scholar 

  8. Vergès B, Rader D, Schaefer J et al. In vivo metabolism of apolipoprotein A-IV in severe hypertriglyceridemia: a combined radiotracer and stable isotope kinetic study J Lipid Res 1994 35: 2280–2291.

    PubMed  Google Scholar 

  9. Pont F, Duvillard L, Maugeais C, Athias A, Persegol L, Gambert P, Vergés B . Isotope ratio mass spectrometry, compared with conventional mass spectrometry in kinetic studies at low and high enrichment levels: application to lipoprotein kinetics Anal Biochem 1997 248: 277–287.

    Article  CAS  Google Scholar 

  10. Duvillard L, Pont F, Florentin E, Gambert P, Vergès B . Significant improvement of apolipoprotein B-containing lipoprotein metabolism by insulin treatment in patients with non-insulin-dependent diabetes mellitus Diabetologia 2000 43: 27–35.

    Article  CAS  Google Scholar 

  11. Duvillard L, Pont F, Florentin E, Gambert P, Vergès B . Inefficiency of insulin therapy to correct apolipoprotein A-I metabolic abnormalities in non-insulino-dependent diabetes mellitus Atherosclerosis 2000 152: 229–237.

    Article  CAS  Google Scholar 

  12. Cohn JS, McNamara JR, Cohn SD, Ordovas JM, Schaefer EJ . Plasma apolipoprotein changes in the triglyceride-rich lipoprotein fraction of human subjects fed a fat-rich meal J Lipid Res 1988 29: 925–936.

    CAS  PubMed  Google Scholar 

  13. Cardin AD, Witt KR, Barnhart CL, Jackson RL . Sulfhydryl chemistry and solubility properties of human plasma apolipoprotein B Biochemistry 1982 21: 4503–4511.

    Article  CAS  Google Scholar 

  14. Yarasheski KE, Smith K, Rennie MJ, Bier DM . Measurement of muscle protein fractional synthetic rate by capillary gas chromatography/combustion isotope ratio mass spectrometry Biol Mass Spectrom 1992 21: 486–490.

    Article  CAS  Google Scholar 

  15. Demmelmair H, Schmidt HL . Precise delta 13C-determination in the range of natural abundance on amino acids from protein hydrolysates by gas chromatography-isotope ratio mass spectrometry Isotopenpraxis Environ Health Stud 1993 29: 237–250.

    Article  CAS  Google Scholar 

  16. Cobelli C, Toffolo G, Foster DM . Tracer-to-tracee ratio for analysis of stable isotope tracer data: link with radioactive kinetic formalism Am J Physiol 1992 262: E968–E975.

    CAS  PubMed  Google Scholar 

  17. Pont F, Duvillard L, Vergès B, Gambert P . Development of compartmental models in stable isotope experiments: application to lipid metabolism Arterioscler Thromb Vasc Biol 1998 18: 853–860.

    Article  CAS  Google Scholar 

  18. Cobelli C, Toffolo G, Bier DM, Nosadini R . Models to interpret kinetic data in stable isotope tracer studies Am J Physiol 1987 253: E551–E564.

    CAS  PubMed  Google Scholar 

  19. Barrett PHR, Bell BM, Cobelli C et al. SAAM II: simulation, analysis and modeling software for tracer and pharmacokinetic studies Metabolism 1998 47: 484–492.

    Article  CAS  Google Scholar 

  20. Ikewaki K, Rader DJ, Schaefer JR, Fairwell T, Zech LA, Brewer HB Jr . Evaluation of apoA-I kinetics in humans using simultaneous endogenous stable isotope and exogenous radiotracer methods J Lipid Res 1993 34: 2207–2215.

    CAS  PubMed  Google Scholar 

  21. Reeds PJ, Hachey DL, Patterson BW, Motil KJ, Klein PD . VLDL apolipoprotein B-100, a potential indicator of the isotopic labeling of the hepatic protein synthetic precursor pool in humans: studies with multiple stable isotopically labeled amino acids J Nutr 1992 122: 457–466.

    Article  CAS  Google Scholar 

  22. Velez-Carrasco W, Lichtenstein AH, Barrett PH, Sun Z, Dolnikowski GG, Welty FK, Schaefer EJ . Human apolipoprotein A-I kinetics within triglyceride-rich lipoproteins and high density lipoproteins J Lipid Res 1999 40: 1695–1700.

    CAS  PubMed  Google Scholar 

  23. Foster DM, Barett PHR, Toffolo G, Beltz W, Cobelli C . Estimating the fractional synthetic rate of plasma apolipoproteins and lipids from stable isotope data J Lipid Res 1993 34: 2193–2205.

    CAS  PubMed  Google Scholar 

  24. Rifai N, King ME . Immunoturbimetric assays of apolipoproteins A, A-I, A-II and B in serum Clin Chem 1986 32: 957–961.

    CAS  PubMed  Google Scholar 

  25. Zilversmit DB . Atherogenesis: a post-prandial phenomenon Circulation 1979 60: 473–485.

    Article  CAS  Google Scholar 

  26. Fisher WR, Venkatakrishnan V, Zech LA et al. Kinetic evidence for both a fast and a slow secretory pathway for apolipoprotein A-I in humans J Lipid Res 1995 36: 1618–1628.

    CAS  PubMed  Google Scholar 

  27. Pietzsch J, Julius U, Nitzsche S, Hanefeld M . In vivo evidence for increased apolipoprotein A-I catabolism in subject with impaired glucose tolerance Diabetes 1990 39: 1017–1027.

    Article  Google Scholar 

  28. Batal R, Tremblay M, Krimbou L et al. Familial HDL deficiency characterizes by hypercatabolism of mature apoA-I but not proapoA-I Arterioscler Thromb Vasc Biol 1998 18: 655–664.

    Article  CAS  Google Scholar 

  29. Zech LA, Schaefer EJ, Bronzert TJ, Aamodt RL, Brewer HB Jr . Metabolism of human apolipoproteins A-I and A-II: compartmental models J Lipid Res 1983 24: 60–71.

    CAS  PubMed  Google Scholar 

  30. Rader DJ, Gregg RE, Meng MS et al. In vivo metabolism of a mutant apolipoprotein, apoA-Iiowa, associated with hypoalphalipoproteinemia and hereditary systemic amyloidosis J Lipid Res 1992 33: 755–763.

    CAS  PubMed  Google Scholar 

  31. Egusa G, Beltz WF, Grundy SM, Howard BV . Influence of obesity on the metabolism of apolipoprotein B in humans J Clin Invest 1985 76: 596–603.

    Article  CAS  Google Scholar 

  32. Cominacini L, Zocca I, Garbin U et al. High-density lipoprotein composistion in obesity: interrelationships with plasma insulin levels and body weight Int J Obes 1988 12: 343–352.

    CAS  PubMed  Google Scholar 

  33. Pietzsch J, Julius U, Nitzsche S, Hanefeld M . In vivo evidence for increased apolipoprotein A-I catabolism in subjects with impaired glucose tolerance Diabetes 1998 47: 1928–1934.

    Article  CAS  Google Scholar 

  34. Dullaart RP, Sluiter WJ, Dikkeschei LD, Hoogenberg K, Van Tol A . Effect of adiposity on plasma lipid transfer protein activities: a possible link between insulin resistance and high density lipoprotein metabolism Eur J Clin Invest 1994 24: 188–194.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are indebted to Véronique Jost of the pharmaceutical department for preparation of 13C-leucine, Cécile Gibassier for invaluable dietary assistance and the study subjects for participating. This investigation was supported by the Université de Bourgogne, the Conseil Régional de Bourgogne, the Institut National de la Santé et de la Recherche Médicale (INSERM) and Parke Davis France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B Vergès.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pont, F., Duvillard, L., Florentin, E. et al. High-density lipoprotein apolipoprotein A-I kinetics in obese insulin resistant patients. An in vivo stable isotope study. Int J Obes 26, 1151–1158 (2002). https://doi.org/10.1038/sj.ijo.0802070

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ijo.0802070

Keywords

This article is cited by

Search

Quick links