Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Paper
  • Published:

Adiposity, insulin and lipid metabolism in post-menopausal women

Abstract

OBJECTIVE: To investigate relationships between body fat and its distribution and carbohydrate and lipid tolerance using statistical comparisons in post-menopausal women.

DESIGN: Sequential meal, postprandial study (600 min) which included a mixed standard breakfast (30 g fat) and lunch (44 g fat) given at 0 and 270 min, respectively, after an overnight fast.

SUBJECTS: Twenty-eight post-menopausal women with a diverse range of body weight (body mass index (BMI), mean 27.2, range 20.5–38.8 kg/m2) and abdominal fat deposition (waist, mean 86.4, range 63.5–124.0 cm). Women with BMI <18 or >37 kg/m2, age>80 y and taking hormone replacement therapy (HRT) were excluded.

MEASUREMENTS: Anthropometric measurements were performed to assess total and regional fat deposits. The concentrations of plasma total cholesterol, high density lipoprotein (HDL) cholesterol, triacylglycerol (TAG), glucose, insulin (ins), non-esterified fatty acids (NEFA) and apolipoprotein (apo) B-48 were analysed in plasma collected at baseline (fasted state) and at 13 postprandial time points for a 600 min period.

RESULTS: Insulin concentrations in the fasted and fed state were significantly correlated with all measures of adiposity (BMI, waist, waist–hip ratio (W/H), waist–height ratio (W/Ht) and sum of skinfold thickness (SSk)). After controlling for BMI, waist remained significantly and positively associated with fasted insulin (r=0.559) with waist contributing 53% to the variability after multiple regression analysis. After controlling for waist, BMI remained significantly correlated with postprandial (IAUC) insulin (r=0.535) contributing 66% of the variability of this measurement. No association was found between any measures of adiposity and glucose concentrations, although insulin concentration in relation to glucose concentration (glucose–insulin ratio) was significantly negatively correlated with all measures of adiposity. A significant positive correlation was found between fasted TAG and BMI (r=0.416), waist (r=0.393) and Ssk (r=0.457) and postprandial (AUC) TAG with BMI (r=0.385) and Ssk (r=0.406). A significantly higher postprandial apolipoprotein (apo) B-48 response was observed in those women with high BMI (>27 kg/m2). Fasting levels of NEFA were significantly and positively correlated with all measures of adiposity (except W/H). No association was found between cholesterol containing particles and any measure of adiposity.

CONCLUSION: Hyperinsulinaemia associated with increasing body fat and central fat distribution is associated with normal glucose but not TAG or NEFA concentrations in postmenopausal women.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Colditz GA, Willet WC, Stampfer MJ, Rosner B, Speizer FE, Hennekens CH . Menopause and the risk of coronary heart disease in women New Engl J Med 1987 316: 1105–1110.

    Article  CAS  Google Scholar 

  2. van der Schouw YT, van der Graaf Y, Steyerberg EW, Eijkemans MJC, Banga JD . Age at menopause as a risk factor for cardiovascular mortality Lancet 1996 347: 714–718.

    Article  Google Scholar 

  3. van Beek AP, de Ruijter-Heijstek FC, Erkelens DW, de Bruin TWA . Menopause is associated with reduced protection from postprandial lipemia Arterioscler Thromb Vasc Biol 1999 19: 2737–2741.

    Article  Google Scholar 

  4. Griffin BA, Freeman DJ, Tait GW, Thomson J, Caslake MJ, Packard CJ, Shepherd J . Role of plasma triglycerides in the regulation of plasma LDL subfractions: relative contribution of small, dense LDL to coronary heart disease Atherosclerosis 1994 106: 241–253.

    Article  CAS  Google Scholar 

  5. Westendorp ICD, Bots ML, Grobbee DE, Reneman RS, Hoeks APG, Van Popele NM, Hofman A, Witteman JCM . Menopausal status and distensibility of the common carotid artery Arterioscler Thromb Vasc Biol 1999 19: 713–717.

    Article  CAS  Google Scholar 

  6. Ley CJ, Lees B, Stevenson JC . Sex- and menopause-associated changes in body fat distribution Am J Clin Nutr 1992 55: 950–954.

    Article  CAS  Google Scholar 

  7. Ward KD, Sparrow D, Vokonas PS, Willet WC, Landsberg L, Weiss ST . The relationships of abdominal obesity, hyperinsulinaemia and saturated fat intake to serum lipid levels: the Normative Aging Study Int J Obes Relat Metab Disord 1993 18: 137–144.

    Google Scholar 

  8. Edwards KL, Austin MA, Newman B, Mayer E, Krauss RM, Selby JV . Multivariate analysis of the insulin resistance syndrome in women Arterioscler Thromb 1994 14: 1940–1945.

    Article  CAS  Google Scholar 

  9. Dowling HJ, Fried SK, Pi-Sunyer FX . Insulin resistance in adipocytes of obese women: effects of body fat distribution and race Metabolism 1995 44: 987–995.

    Article  CAS  Google Scholar 

  10. Boyko EJ, Leonetti DL, Bergstrom RW, Newell-Morris L, Fujimoto WY . Visceral adiposity, fasting plasma insulin, and lipid and lipoprotein levels in Japanese Americans Int J Obes Relat Metab Disord 1996 20: 801–808.

    CAS  PubMed  Google Scholar 

  11. Couillard C, Lamarche B, Tchernof A, Prud'homme D, Tremblay A, Bouchard C, Moorjani S, Nadeau A, Lupien PJ, Despres J-P . Plasma high density lipoprotein cholesterol but not apolipoprotein A-1 is a good correlate of the visceral obesity-insulin resistance dyslipidaemic syndrome Metabolism 1996 45: 882–888.

    Article  CAS  Google Scholar 

  12. Reaven GM, Chen YDI, Jeppesen J, Maheux P, Krauss RM . Insulin resistance and hyperinsulinaemia in individuals with small dense low density lipoprotein particles J Clin Invest 1993 92: 141–146.

    Article  CAS  Google Scholar 

  13. Selby JV, Austin MA, Newman B, Zhang D, Quesenberry CP, Mayer EJ, Krauss RM . LDL subclass phenotypes and the insulin resistance syndrome in women Circulation 1993 88: 381–387.

    Article  CAS  Google Scholar 

  14. Austin MA, King MC, Vranigan KM, Krauss RM . Atherogenic lipoprotein phenotype: a proposed genetic marker for coronary heart disease risk Circulation 1990 82: 495–506.

    Article  CAS  Google Scholar 

  15. Williams CM . Cardiovascular risk factors in women Proc Nutr Soc 1997 56: 383–391.

    Article  CAS  Google Scholar 

  16. Kannel WB, Castelli WB, Gordon I, McNamara PM . Serum cholesterol lipoproteins and the risk of coronary heart disease. The Framingham Study Ann Intern Med 1971 74: 1–12.

    Article  CAS  Google Scholar 

  17. Bottinger LE, Carlson LA . Risk factors for death for male and females. A study of the death pattern in Stockholm Prospective Study Acta Med Scand 1982 211: 437–442.

    Article  Google Scholar 

  18. Johanssen S, Bondjets G, Frager G, Wedel H, Espogramm A, Olotsson SO . Serum lipids and apolipoprotein levels in women with acute myocardial infarction Arteriosclerosis 1988 8: 742–749.

    Article  Google Scholar 

  19. Bengtsson C, Björkelund C, Lapidus L, Lissner L . Associations of serum lipid concentrations and obesity with mortality in women: 20 y follow up of participants in prospective population study in Gothenburg, Sweden Br Med J 307: 1385–1388.

  20. Castelli WP . The triglyceride issue: a view from Framingham Am Heart J 1988 112: 432–437.

    Article  Google Scholar 

  21. Barrett-Connor E, Bush TI . Why is diabetes a stronger risk factor for fatal ischaemic heart disease in women? JAMA 1991 307: 627–631.

    Article  Google Scholar 

  22. Couillard C, Bergeron N, Prud'Homme D, Bergeron J, Tremblay A, Bouchard C, Mauriège P, Després JP . Postprandial triglyceride response in visceral obesity in men Diabetes 1998 47: 953–960.

    Article  CAS  Google Scholar 

  23. Vansant G, Mertens A, Muls E . Determinants of postprandial lipemia in obese women Int J Obes Relat Metab Disord 1999 23: 14–21.

    Article  Google Scholar 

  24. Carey DG, Jenkins AB, Campbell LV, Freund J, Chisholm DJ . Abdominal fat and insulin resistance in normal overweight women. Direct measurements reveal a strong relationship in subjects at both low and high risk of NIDDM Diabetes 1996 45: 633–638.

    Article  CAS  Google Scholar 

  25. Sites CK, Calles-Escandón J, Brochu M, Butterfield M, Ashikaga T, Poehlman ET . Relation of regional fat distribution to insulin sensitivity in postmenopausal women Fertil Steril 2000 73: 61–65.

    Article  CAS  Google Scholar 

  26. Durnin JV, Wormsley J . Body fat assessed from total body density and its estimation from skinfold thickness measurements on 481 men and women aged 16 to 72 y Br J Nutr 1974 32: 77–97.

    Article  CAS  Google Scholar 

  27. Edelstein C, Scanu AM . Precautionary measures for collecting blood destined for lipoprotein isolation Meth Enzymol 1986 128: 151–155.

    Article  CAS  Google Scholar 

  28. McNamara JR, Huang C, Massov T, Leary ET, Warnick GR, Rubins HB, Robins SJ, Schefer EJ . Modification of the dextran-Mg+2 high-density lipoprotein cholesterol precipitation method for use with previously frozen plasma Clin Chem 1994 40: 233–239.

    CAS  PubMed  Google Scholar 

  29. Freidewald WT, Levey RI . Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge Clin Chem 1972 18: 499–502.

    Google Scholar 

  30. Mohamed-Ali V, Pinkney JH, Panahloo A, Cwyfan-Hughes S, Holly JMP, Yudkin JS . Insulin-like growth factor binding-1 NIDDM: relationship with the insulin resistance syndrome. Clin Endocrin 1999 50: 221–228.

    Article  CAS  Google Scholar 

  31. Lovegrove JA, Isherwood SG, Jackson KG, Williams CM, Gould BJ . Quantification of apolipiprotein B-48 in triacylglycerol-rich lipoproteins by a specific enzyme-linked immunosorbant assay Biochim Biophys Acta 1996 1301: 221–229.

    Article  Google Scholar 

  32. Kalkhoff RK, Hartz AH, Rupley D, Kissebah AH, Kelber S . Relationship of body fat distribution tp blood pressure, carbohydrate tolerance and plasma lipids in healthy obese women J Lab Clin Med 1983 102: 621–627.

    CAS  Google Scholar 

  33. Report of the International Obesity Task Force (IOTF) Prevention and management of the global epidemic of obesity WHO: Geneva 1997.

  34. Limoux S, Prud'homme D, Bouchard C, Tremblay C, Després JP . A single threshold value of waist girth identifies normal-weight and overweight subjects with excess visceral adipose tissue Am J Clin Nutr 1996 64: 685–693.

    Article  Google Scholar 

  35. Bonadonna RC, Groop L, Kraemer N, Ferrannini E, Del Prato S, DeFronzo RA . Obesity and insulin resistance in humans: a dose-response study Metabolism 1990 39: 452–459.

    Article  CAS  Google Scholar 

  36. Peiris AN, Mueller RA, Smith GA, Struve MF, Kissebah AH . Splanchnic insulin metabolism in obesity. Influence of body fat distribution J Clin Invest 1986 78: 1648–1657.

    Article  CAS  Google Scholar 

  37. Peiris AN, Mueller RA, Struve MF, Smith GA, Kissebah AH . Relationship of androgenic activity to splanchnic insulin metabolism and peripheral glucose utilization in premenopausal women J Clin Endocrinol Metab 1987 64: 162–169.

    Article  CAS  Google Scholar 

  38. Peiris AN, Struve MF, Mueller RA, Lee MA, Kissebah AH . Glucose metabolism in obesity: influence of body fat distribution J Clin Endocrinol Metab 1989 67: 760–767.

    Article  Google Scholar 

  39. Percheron C, Colette C, Mariano-Goulart D, Avignon A, Capeyron O, Boniface H, Bressot N, Monnier L . Relationship between insulin sensitivity, obesity, body fat distribution and β-endorphinaemia in obese women Int J Obes Relat Metab Disord 1998 22: 143–148.

    Article  CAS  Google Scholar 

  40. Sattar N, Tan CE, Han TS, Forster L, Lean MEJ, Shepherd J, Packard CJ . Associations of indeces of adiposity with atherogenic lipoprotein subfractions Int J Obes Relat Metab Disord 1998 22: 432–439.

    Article  CAS  Google Scholar 

  41. Abate N, Garg A, Peshock RM, Stray-Gundersen J, Grundy SM . Relationships of generalized and regional adiposity to insulin sensitivity J Clin Invest 1995 96: 88–98.

    Article  CAS  Google Scholar 

  42. Caprio S, Hyman LD, Limb C, McCarthy S, Lange R, Sherwin RS, Schulman G, Tamborlane WV . Central adiposity and its metabolic correlates in obese adolesent girls Am J Physiol Endocrinol Metab 1995 32: E118–E126.

    Article  Google Scholar 

  43. Herranz L, Zapata A, Grande C, Megia A, Pallardo LF . Body fat distribution, insulin mediated suppression of non-esterified fatty acids and plasma triglycerides in obese subjects Horm Metab Res 1998 30: 141–145.

    Article  CAS  Google Scholar 

  44. Ryu JE, Craven TE, Macarthur RD, Hinson WH, Bond MG, Hagaman AP, Crouse JR . Relationship of intraabdominal fat as measured by magnetic-resonance-imaging to postprandial lipemia in middle-aged subjects Am J Clin Nutr 1994 60: 586–591.

    Article  CAS  Google Scholar 

  45. Lemieux S, Després JP, Moorjani S, Nadeau A, Thériault G, Prud'homme D, Tremblay A, Bouchard C, Lupien PJ . Are gender differences in cardiovascular disease risk factors explained by the level of visceral adipose tissue? Diabetologia 1994 37: 757–764.

    Article  CAS  Google Scholar 

  46. Williams MJ, Hunter GR, Kekes-Szabo T, Snyder S, Treuth MS . Regional fat distribution in women and risk of cardiovascular disease Am J Clin Nutr 1997 65: 855–860.

    Article  CAS  Google Scholar 

  47. Wideman L, Kaminsky LA, Whaley MH . Postprandial lipaemia in obese men with abdominal fat patterning J Sports Med Phys Fitness 1996 36: 204–210.

    CAS  PubMed  Google Scholar 

  48. Rabkin SW, Chen Y, Leiter L, Liu L, Reeder BA . Risk factor correlates of body mass index Can Med Assoc J 1997 157(Suppl 1): S26–S31.

    Google Scholar 

  49. Reeder BA, Senthilselvan A, Després J-P, Angel A, Liu L, Wang H, Rabkin SW . The association of cardiovascular disease risk factors with abdominal obesity in Canada Can Med Assoc J 1997 157(Suppl 1): S39–S45.

    Google Scholar 

  50. Rifkind BM, Gale M, Jackson ID . Serum lipid levels and body fat distribution in obese females J Clin Pathol 1967 20: 249–251.

    Article  CAS  Google Scholar 

  51. Minihane AM, Khan S, Talmud PJ, Williams DL, Wright JW, Murphy MC, Griffin BA, Williams CM . Lack of association between lipaemia and central adiposity in subjects with an atherogenic lipoprotein phenotype (ALP) Int J Obes Relat Metab Disord 2000 24: 1097–1106.

    Article  CAS  Google Scholar 

  52. Syvanne M, Talmud PJ, Humpheries SE, Fisher RM, Rosseneu M, Hilden H, Taskinen MR . Determination of postprandial lipaemia in men with coronary artery disease and low levels of HDL cholesterol J Lipid Res 1997 38: 1463–1472.

    CAS  PubMed  Google Scholar 

  53. Fujioka S, Matsuzawa Y, Tokunaga K, Tarui S . Contribution of intra-abdominal fat accumulation to impairment of glucose and lipid metabolism in human obesity Metabolism 1987 36: 54–59.

    Article  CAS  Google Scholar 

  54. Isles CG, Hole DJ, Hawthorne DM, Lever AF . Relationship between coronary risk and coronary mortality in women of the Renfrew and Paisley survey: comparison with men Lancet 1992 339: 702–706.

    Article  CAS  Google Scholar 

  55. Laakso M . How good a marker is insulin level for insulin resistance? Am J Epidemiol 1993 137: 959–965.

    Article  CAS  Google Scholar 

  56. van der Kooy K, Seidell JC . Techniques for measurement of visceral fat: a practical guide Int J Obes Relat Metab Disord 1993 17: 187–196.

    Google Scholar 

  57. Armellini F, Zamboni M, Perdichizzi G, Greco A, Napoli N, Pandolfo I, Mondello G, Bosello O . Computed tomography visceral adipose tissue volume measurements of Italians. Predictive equations Eur J Clin Nutr 1996 22: 719–727.

    Google Scholar 

  58. Molarius A, Seidell JC . Selection of anthropometric indicators for classification of abdominal fatness—a critical review Int J Obes Relat Metab Disord 1998 22: 719–727.

    Article  CAS  Google Scholar 

  59. Pouliot M-C, Després J-P, Lemieux S, Moorjani S, Bouchard C, Tremblay A, Nadeau A, Lupien PJ . Waist circumference and abdominal sagittal diameter: best simple anthropometric indexes of abdominal visceral adipose tissue accumulation and related cardiovascular risk in men and women Am J Cardiol 1994 73: 460–468.

    Article  CAS  Google Scholar 

  60. Lemieux S, Prud'homme D, Bouchard C, Tremblay A, Després J-P . A single threshold value of waist girth identifies normal-weight and overweight subjects with excess adipose tissue Am J Clin Nutr 1996 64: 685–693.

    Article  CAS  Google Scholar 

  61. Taylor RW, Keil D, Gold EJ, Williams SM, Goulding A . Body mass index, waist girth, and waist-to-hip ratio as indexes of total and regional adiposity in women: evaluation using receiver operating characteristic curves Am J Clin Nutr 1998 67: 44–49.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank members of the Hugh Sinclair Unit of Human Nutrition for their invaluable help on the postprandial study day. Thanks must also go to Helen Osborne for her help with sample analysis and Dr Mohamed-Ali for insulin analysis. We are also indebted to the subjects without whom the study would not have been possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JA Lovegrove.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lovegrove, J., Silva, K., Wright, J. et al. Adiposity, insulin and lipid metabolism in post-menopausal women. Int J Obes 26, 475–486 (2002). https://doi.org/10.1038/sj.ijo.0801963

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ijo.0801963

Keywords

This article is cited by

Search

Quick links