Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Paper
  • Published:

Impaired glucose metabolism in the heart of obese Zucker rats after treatment with phorbol ester

Abstract

OBJECTIVE: To investigate the influence of obesity on the regulation of myocardial glucose metabolism following protein kinase C (PKC) activation in obese (fa/fa) and lean (Fa/?) Zucker rats.

DESIGN: Isolated hearts obtained from 17-week-old lean and obese Zucker rats were perfused with 200 nM phorbol 12-myristate 13-acetate (PMA) for different time periods prior to the evaluation of PKC and GLUT-4 translocation. For metabolic studies isolated hearts from 48 h starved Zucker rats were perfused with an erythrocytes-enriched buffer containing increased concentrations (10–100 nM) of PMA.

MEASUREMENTS: Immunodetectable PKC isozymes and GLUT-4 were determined by Western blots. Glucose oxidation and glycolysis were evaluated by measuring the myocardial release of 14CO2 and 3H2O from [U-14C]glucose and [5-3H]glucose, respectively.

RESULTS: PMA (200 nM) induced maximal translocation of ventricular PKCα from the cytosol to the membranes within 10 min. This translocation was 2-fold lower in the heart from obese rats when compared to lean rats. PMA also induced a significant translocation of ventricular GLUT-4 from the microsomal to the sarcolemmal fraction within 60 min in lean but not in obese rats. Rates of basal cardiac glucose oxidation and glycolysis in obese rats were approximately 2-fold lower than those of lean rats. Perfusion with increasing concentrations of PMA (10–100 nM) led to a significant decrease of cardiac glucose oxidation in lean but not in obese rats.

CONCLUSION: Our results show that in the heart of the genetically obese Zucker rat, the impairment in PKCα activation is in line with a diminished activation of GLUT-4 as well as with the lack of PMA effect on glucose oxidation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Bray GA . The Zucker-fatty rat: a review Fed Proc 1977 36: 148–153.

    CAS  PubMed  Google Scholar 

  2. Zucker LM, Antoniades HN . Insulin and obesity in the Zucker genetically obese rat ‘fatty’ Endocrinology 1972 90: 1320–1330.

    Article  CAS  PubMed  Google Scholar 

  3. Crist GH, Xu B, Lanoue KF, Lang CH . Tissue-specific effects of in vivo adenosine receptor blockade on glucose uptake in Zucker rats FASEB J 1998 12: 1301–1308.

    Article  CAS  PubMed  Google Scholar 

  4. Zaninetti D, Greco-Perotto R, Assimacopoulos-Jeannet F, Jeanrenaud B . Dysregulation of glucose transport and transporters in perfused hearts of genetically obese (fa/fa) rats Diabetologia 1989 32: 56–60.

    Article  CAS  PubMed  Google Scholar 

  5. King PA, Horton ED, Hirshman MF, Horton ES . Insulin resistance in obese Zucker rat (fa/fa) skeletal muscle is associated with a failure of glucose transporter translocation J Clin Invest 1992 90: 1568–1575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Uphues I, Kolter T, Goud B, Eckel J . Failure of insulin-regulated recruitment of the glucose transporter GLUT4 in cardiac muscle of obese Zucker rats is associated with alterations of small-molecular-mass GTP–binding proteins Biochem J 1995 311: 161–166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Campion DR, Shapira JF, Allen CE, Hausman GJ, Martin RJ . Metabolic characteristics of skeletal muscle from lean and obese Zucker rats Growth 1987 51: 397–410.

    CAS  PubMed  Google Scholar 

  8. Van de Werve G, Massillon D . Altered regulation of glycogen metabolism by vasopressin and phenylephrine in hepatocytes from insulin-resistant obese (fa/fa) rats. Role of protein kinase C Biochem J 1990 269: 795–799.

    Article  Google Scholar 

  9. Dunn MA, Hartsook EW . Comparative amino acid and protein metabolism in obese and non-obese Zucker rats J Nutr 1980 110: 1865–1879.

    Article  CAS  PubMed  Google Scholar 

  10. Cooper DR, Watson JE, Dao ML . Decreased expression of protein kinase-C alpha, beta, and epsilon in soleus muscle of Zucker obese (fa/fa) rats Endocrinology 1993 133: 2241–2247.

    Article  CAS  PubMed  Google Scholar 

  11. Van de Werve G, Zaninetti D, Lang U, Vallotton MB, Jeanrenaud B . Identification of a major defect in insulin-resistant tissues of genetically obese (fa/fa) rats. Impaired protein kinase C Diabetes 1987 36: 310–314.

    Article  Google Scholar 

  12. Garcia-Sainz JA, Alcantara-Hernandez R, Robles-Flores M, Torres-Marquez ME, Massillon D, Annabi B, Van de Werve G . Modulation by protein kinase C of the hormonal responsiveness of hepatocytes from lean (Fa/fa?) and obese (fa/fa) Zucker rats Biochim Biophys Acta 1992 1135: 221–225.

    Article  CAS  PubMed  Google Scholar 

  13. Shin OH, da Costa KA, Mar MH, Zeisel SH . Hepatic protein kinase C is not activated despite high intracellular 1,2-sn-diacylglycerol in obese Zucker rats Biochim Biophys Acta 1997 1358: 72–78.

    Article  CAS  PubMed  Google Scholar 

  14. Newton AC. Protein kinase C: structure, function, and regulation . J Biol Chem 1995 270: 28495–28498.

    Article  CAS  PubMed  Google Scholar 

  15. Nishizuka Y . Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C Science 1992 258: 607–614.

    Article  CAS  PubMed  Google Scholar 

  16. Braiman L, Sheffi-Friedman L, Bak A, Tennenbaum T, Sampson SR . Tyrosine phosphorylation of specific protein kinase C isoenzymes participates in insulin stimulation of glucose transport in primary cultures of rat skeletal muscle Diabetes 1999 48: 1922–1929.

    Article  CAS  PubMed  Google Scholar 

  17. Caruso M, Miele C, Oriente F, Maitan A, Bifulco G, Andreozzi F, Condorelli G, Formisano P, Beguinot F . In L6 skeletal muscle cells, glucose induces cytosolic translocation of protein kinase C-alpha and trans-activates the insulin receptor kinase J Biol Chem 1999 274: 28637–28644.

    Article  CAS  PubMed  Google Scholar 

  18. Saltis J, Habberfield AD, Egan JJ, Londos C, Simpson IA, Cushman SW . Role of protein kinase C in the regulation of glucose transport in the rat adipose cell. Translocation of glucose transporters without stimulation of glucose transport activity J Biol Chem 1991 266: 261–267.

    CAS  PubMed  Google Scholar 

  19. Benelli C, Caron M, de Galle B, Fouque F, Cherqui C, Clot JP . Evidence for a role of protein kinase C in the activation of the pyruvate dehydrogenase complex by insulin in Zajdela hepatoma cells Metabolism 1994 43: 1030–1034.

    Article  CAS  PubMed  Google Scholar 

  20. Avignon A, Yamada K, Zhou X, Spencer B, Cardona O, Saba-Siddique S, Galloway L, Standaert ML, Farese RV . Chronic activation of protein kinase C in soleus muscles and other tissues of insulin-resistant type II diabetic Goto-Kakizaki (GK), obese/aged, and obese/Zucker rats. A mechanism for inhibiting glycogen synthesis Diabetes 1996 45: 1396–1404.

    Article  CAS  PubMed  Google Scholar 

  21. Montessuit C, Papageorgiou I, Remondino-Muller A, Tardy I, Lerch R . Post-ischemic stimulation of 2-deoxyglucose uptake in rat myocardium: role of translocation of Glut-4 J Mol Cell Cardiol 1998 30: 393–403.

    Article  CAS  PubMed  Google Scholar 

  22. Gorge G, Chatelain P, Schaper J, Lerch R . Effect of increasing degrees of ischemic injury on myocardial oxidative metabolism early after reperfusion in isolated rat hearts Circul Res 1991 68: 1681–1692.

    Article  CAS  Google Scholar 

  23. Montessuit C, Papageorgiou I, Tardy I, Lerch R . Effect of nutritional state on substrate metabolism and contractile function in postischemic rat myocardium Am J Physiol 1996 271: H2060–H2070.

    CAS  PubMed  Google Scholar 

  24. Duncombe WG . The colorimetric micro-determination of non-esterified fatty acids in plasma Clin Chim Acta 1964 9: 122–125.

    Article  CAS  PubMed  Google Scholar 

  25. Tardy-Cantalupi I, Montessuit C, Papageorgiou I, Remondino-Muller A, Assimacopoulos-Jeannet F, Morel DR, Lerch R . Effect of transient ischemia on the expression of glucose transporters GLUT-1 and GLUT-4 in rat myocardium J Mol Cell Cardiol 1999 31: 1143–1155.

    Article  CAS  PubMed  Google Scholar 

  26. Sun D, Nguyen N, DeGrado TR, Schwaiger M, Brosius FC . Ischemia induces translocation of the insulin-responsive glucose transporter GLUT4 to the plasma membrane of cardiac myocytes Circulation 1994 89: 793–798.

    Article  CAS  PubMed  Google Scholar 

  27. Bandyopadhyay G, Standaert ML, Galloway L, Moscat J, Farese RV . Evidence for involvement of protein kinase C (PKC)-zeta and noninvolvement of diacylglycerol-sensitive PKCs in insulin-stimulated glucose transport in L6 myotubes Endocrinology 1997 138: 4721–4731.

    Article  CAS  PubMed  Google Scholar 

  28. Braiman L, Alt A, Kuroki T, Ohba M, Bak A, Tennenbaum T, Sampson SR . Protein kinase Cdelta mediates insulin-induced glucose transport in primary cultures of rat skeletal muscle Mol Endocrinol 1999 13: 2002–2012.

    CAS  PubMed  Google Scholar 

  29. Standaert ML, Bandyopadhyay G, Perez L, Price D, Galloway L, Poklepovic A, Sajan MP, Cenni V, Sirri A, Moscat J, Toker A, Farese RV . Insulin activates protein kinases C-zeta and C-lambda by an autophosphorylation-dependent mechanism and stimulates their translocation to GLUT4 vesicles and other membrane fractions in rat adipocytes J Biol Chem 1999 274: 25308–25316.

    Article  CAS  PubMed  Google Scholar 

  30. Todaka M, Hayashi H, Imanaka T, Mitani Y, Kamohara S, Kishi K, Tamaoka K, Kanai F, Shichiri M, Morii N, Narumiya S, Ebina Y . Roles of insulin, guanosine 5-[gamma-thio]triphosphate and phorbol 12-myristate 13-acetate in signalling pathways of GLUT4 translocation Biochem J 1996 315: 875–882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vogt B, Mushack J, Seffer E, Haring HU . The translocation of the glucose transporter sub-types GLUT1 and GLUT4 in isolated fat cells is differently regulated by phorbol esters Biochem J 1991 275: 597–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Russ M, Eckel J . Insulin action on cardiac glucose transport: studies on the role of protein kinase C Biochim Biophys Acta 1995 1265: 73–78.

    Article  PubMed  Google Scholar 

  33. Rösen P, Herberg L, Reinauer H . Different types of postinsulin receptor defects contribute to insulin resistance in hearts of obese Zucker rats Endocrinology 1986 119: 1285–1291.

    Article  PubMed  Google Scholar 

  34. Crettaz M, Prentki M, Zaninetti D, Jeanrenaud B . Insulin resistance in soleus muscle from obese Zucker rats. Involvement of several defective sites Biochem J 1980 186: 525–534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Farese RV, Standaert ML, Barnes DE, Davis JS, Pollet RJ . Phorbol ester provokes insulin-like effects on glucose transport, amino acid uptake, and pyruvate dehydrogenase activity in BC3H-1 cultured myocytes Endocrinology 1985 116: 2650–2655.

    Article  CAS  PubMed  Google Scholar 

  36. Berti L, Gammeltoft S . Leptin stimulates glucose uptake in C2C12 muscle cells by activation of ERK2 Mol Cell Endocrinol 1999 157: 121–130.

    Article  CAS  PubMed  Google Scholar 

  37. Cohen B, Novick D, Rubinstein M . Modulation of insulin activities by leptin Sciences 1996 274: 1185–1188.

    Article  CAS  Google Scholar 

  38. Ookuma M, Ookuma K, York DA . Effects of leptin on insulin secretion from isolated rat pancreatic islets Diabetes 1988 47: 219–223.

    Article  Google Scholar 

  39. Lee JY, Hannun YA, Obeid LM. J B . Functional dichotomie of protein kinase C (PKC) in tumor necrosis factor-α (TNF-α) signal transduction in L929 cells J Biol Chem 2000 275: 29290–29298.

    Article  CAS  PubMed  Google Scholar 

  40. Frühbeck G, Salvador J . Regulation between leptin and the regulation of glucose metabolism Diabetologia 2000 43: 3–12.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank Professor B Jeanrenaud for the generous gift of Zucker rats. We also thank Dr lsabelle Cusin for valuable discussion. We gratefully acknowledge the expert technical assistance of Irene Papageorgiou (metabolic studies), Christine Gerber and Manuella Rey (PKC and GLUT-4 studies). This study was supported by grant nos 31-42295.94 and 31-52935.97 from the Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U Lang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morabito, D., Montessuit, C., Rosenblatt-Velin, N. et al. Impaired glucose metabolism in the heart of obese Zucker rats after treatment with phorbol ester. Int J Obes 26, 327–334 (2002). https://doi.org/10.1038/sj.ijo.0801881

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ijo.0801881

Keywords

Search

Quick links