Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Large-area perovskite solar cells employing spiro-Naph hole transport material

Subjects

Abstract

Stabilizing the best-performing state-of-the-art perovskite solar cells (PSCs) based on a spiro-OMeTAD hole transport material (HTM), without sacrificing their high power conversion efficiency (PCE) levels, is a challenging task. By exploiting the symmetry-tuned strategy at the molecular level, we have developed spiro-OMeTAD analogues (namely, the spiro-Naph series) with asymmetric phenylnaphthylamine edge units. The new spiro-Naph HTM-based PSC achieved a high PCE of 24.43%, higher than that achieved with spiro-OMeTAD. In addition to excellent stability when soaking the encapsulated device with continuous light, superior device stability was also obtained for the unencapsulated spiro-Naph-based PSC—a PCE of 21.12% was retained in air with ~25% relative humidity after 2,000 h and a PCE of 18.79% was retained at an elevated temperature of 60 °C after 400 h. We also constructed a spiro-Naph-based large-area module (25 cm2) with a PCE of 21.83%.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structures and optical and electrochemical properties of the HTMs.
Fig. 2: Thermal characteristics and charge carrier dynamics.
Fig. 3: Photovoltaic performances.
Fig. 4: Stability measurements and molecular simulations.
Fig. 5: Fabrication of a large-area PSC module.

Similar content being viewed by others

Data availability

All relevant data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).

    Article  Google Scholar 

  2. Bush, K. A. et al. 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nat. Energy 2, 17009 (2017).

    Article  ADS  Google Scholar 

  3. Grätzel, M. The rise of highly efficient and stable perovskite solar cells. Acc. Chem. Res. 50, 487–491 (2017).

    Article  Google Scholar 

  4. Jeon, N. J. et al. Compositional engineering of perovskite materials for high-performance solar cells. Nature 517, 476–480 (2015).

    Article  ADS  Google Scholar 

  5. Min, H. et al. Efficient, stable solar cells by using inherent bandgap of α-phase formamidinium lead iodide. Science 366, 749–753 (2019).

    Article  ADS  Google Scholar 

  6. Snaith, H. J. Present status and future prospects of perovskite photovoltaics. Nat. Mater. 17, 372–376 (2018).

    Article  ADS  Google Scholar 

  7. Best Research-Cell Efficiencies Chart (National Renewable Energy Laboratory, 2020); https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20200218.pdf

  8. Leijtens, T. et al. Stability of metal halide perovskite solar cells. Adv. Energy Mater. 5, 1500963 (2015).

    Article  Google Scholar 

  9. Park, N.-G. et al. Towards stable and commercially available perovskite solar cells. Nat. Energy 1, 16152 (2016).

    Article  ADS  Google Scholar 

  10. Wang, R. et al. A review of perovskites solar cell stability. Adv. Funct. Mater. 29, 1808843 (2019).

    Article  Google Scholar 

  11. Bella, F. et al. Improving efficiency and stability of perovskite solar cells with photocurable fluoropolymers. Science 354, 203–206 (2016).

    Article  ADS  Google Scholar 

  12. Heo, J. H. et al. Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat. Photon. 7, 486–491 (2013).

    Article  ADS  Google Scholar 

  13. Jiang, Q. et al. Surface passivation of perovskite film for efficient solar cells. Nat. Photon. 13, 460–466 (2019).

    Article  ADS  Google Scholar 

  14. Jung, E. H. et al. Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature 567, 511–515 (2019).

    Article  ADS  Google Scholar 

  15. Liu, Y. et al. Ultrahydrophobic 3D/2D fluoroarene bilayer-based water-resistant perovskite solar cells with efficiencies exceeding 22%. Sci. Adv. 5, eaaw2543 (2019).

    Article  ADS  Google Scholar 

  16. Seok, S. I., Grätzel, M. & Park, N.-G. Methodologies toward highly efficient perovskite solar cells. Small 14, 1704177 (2018).

    Article  Google Scholar 

  17. Yang, W. S. et al. Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Science 356, 1376–1379 (2017).

    Article  ADS  Google Scholar 

  18. Calió, L., Kazim, S., Grätzel, M. & Ahmad, S. Hole-transport materials for perovskite solar cells. Angew. Chem. Int. Ed. 55, 14522–14545 (2016).

    Article  Google Scholar 

  19. Jeon, N. J. et al. o-Methoxy substituents in spiro-OMeTAD for efficient inorganic–organic hybrid perovskite solar cells. J. Am. Chem. Soc. 136, 7837–7840 (2014).

    Article  Google Scholar 

  20. Jeon, N. J. et al. A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nat. Energy 3, 682–689 (2018).

    Article  ADS  Google Scholar 

  21. Jeong, M. et al. Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss. Science 369, 1615–1620 (2020).

    Article  ADS  Google Scholar 

  22. Petrus, M. L. et al. New generation hole transporting materials for perovskite solar cells: amide-based small-molecules with nonconjugated backbones. Adv. Energy Mater. 8, 1801605 (2018).

    Article  Google Scholar 

  23. Urieta-Mora, J., García-Benito, I., Molina-Ontoria, A. & Martín, N. Hole transporting materials for perovskite solar cells: a chemical approach. Chem. Soc. Rev. 47, 8541–8571 (2018).

    Article  Google Scholar 

  24. Yin, X., Song, Z., Li, Z. & Tang, W. Toward ideal hole transport materials: a review on recent progress in dopant-free hole transport materials for fabricating efficient and stable perovskite solar cells. Energy Environ. Sci. 13, 4057–4086 (2020).

    Article  Google Scholar 

  25. Kim, G.-W. et al. Dopant-free polymeric hole transport materials for highly efficient and stable perovskite solar cells. Energy Environ. Sci. 9, 2326–2333 (2016).

    Article  Google Scholar 

  26. Saliba, M. et al. A molecularly engineered hole-transporting material for efficient perovskite solar cells. Nat. Energy 1, 15017 (2016).

    Article  ADS  Google Scholar 

  27. Zhang, F. et al. Polymeric, cost-effective, dopant-free hole transport materials for efficient and stable perovskite solar cells. J. Am. Chem. Soc. 141, 19700–19707 (2019).

    Article  Google Scholar 

  28. Kim, H.-S. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012).

    Article  Google Scholar 

  29. Liu, X. et al. 20.7% highly reproducible inverted planar perovskite solar cells with enhanced fill factor and eliminated hysteresis. Energy Environ. Sci. 12, 1622–1633 (2019).

    Article  Google Scholar 

  30. Luo, D. et al. Enhanced photovoltage for inverted planar heterojunction perovskite solar cells. Science 360, 1442–1446 (2018).

    Article  ADS  Google Scholar 

  31. Ke, W. et al. Dopant-free tetrakis-triphenylamine hole transporting material for efficient tin-based perovskite solar cells. J. Am. Chem. Soc. 140, 388–393 (2018).

    Article  Google Scholar 

  32. Li, Z. A. et al. Rational design of dipolar chromophore as an efficient dopant-free hole-transporting material for perovskite solar cells. J. Am. Chem. Soc. 138, 11833–11839 (2016).

    Article  Google Scholar 

  33. Liu, J. et al. A dopant-free hole-transporting material for efficient and stable perovskite solar cells. Energy Environ. Sci. 7, 2963–2967 (2014).

    Article  Google Scholar 

  34. Liu, Y. et al. Perovskite solar cells employing dopant-free organic hole transport materials with tunable energy levels. Adv. Mater. 28, 440–446 (2016).

    Article  ADS  Google Scholar 

  35. Molina-Ontoria, A. et al. Benzotrithiophene-based hole-transporting materials for 18.2% perovskite solar cells. Angew. Chem. Int. Ed. 55, 6270–6274 (2016).

    Article  Google Scholar 

  36. Feng, S. et al. Fused-ring acceptors with asymmetric side chains for high-performance thick-film organic solar cells. Adv. Mater. 29, 1703527 (2017).

    Article  Google Scholar 

  37. Li, C., Fu, H., Xia, T. & Sun, Y. Asymmetric nonfullerene small molecule acceptors for organic solar cells. Adv. Energy Mater. 9, 1900999 (2019).

    Article  Google Scholar 

  38. Bin, H. et al. 11.4% efficiency non-fullerene polymer solar cells with trialkylsilyl substituted 2D-conjugated polymer as donor. Nat. Commun. 7, 13651 (2016).

    Article  ADS  Google Scholar 

  39. Holliday, S. et al. High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor. Nat. Commun. 7, 11585 (2016).

    Article  ADS  Google Scholar 

  40. Sun, Y. et al. Solution-processed small-molecule solar cells with 6.7% efficiency. Nat. Mater. 11, 44–48 (2012).

    Article  ADS  Google Scholar 

  41. Zhou, R. et al. All-small-molecule organic solar cells with over 14% efficiency by optimizing hierarchical morphologies. Nat. Commun. 10, 5393 (2019).

    Article  ADS  Google Scholar 

  42. Han, Q. et al. Single crystal formamidinium lead Iodide (FAPbI3): insight into the structural, optical and electrical properties. Adv. Mater. 28, 2253–2258 (2016).

    Article  Google Scholar 

  43. Son, D.-Y. et al. Self-formed grain boundary healing layer for highly efficient CH3NH3PbI3 perovskite solar cells. Nat. Energy 1, 16081 (2016).

    Article  ADS  Google Scholar 

  44. Chen, H. et al. Advances to high-performance black-phase FAPbI3 perovskite for efficient and stable photovoltaics. Small Struct. 2, 2000130 (2021).

    Article  Google Scholar 

  45. Eperon, G. E. et al. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 7, 982–988 (2014).

    Article  Google Scholar 

  46. Kim, M. et al. Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells. Joule 3, 2179–2192 (2019).

    Article  Google Scholar 

  47. Wang, P. et al. Gradient energy alignment engineering for planar perovskite solar cells with efficiency over 23%. Adv. Mater. 32, 1905766 (2020).

    Article  Google Scholar 

  48. Cohen, B.-E., Aharon, S., Dymshits, A. & Etgar, L. Impact of antisolvent treatment on carrier density in efficient hole-conductor-free perovskite-based solar cells. J. Phys. Chem. C 120, 142–147 (2016).

    Article  Google Scholar 

  49. Luber, E. J. & Buriak, J. M. Reporting performance in organic photovoltaic devices. ACS Nano 7, 4708–4714 (2013).

    Article  Google Scholar 

  50. Yin, X. et al. Binary hole transport materials blending to linearly tune HOMO level for high efficiency and stable perovskite solar cells. Nano Energy 51, 680–687 (2018).

    Article  Google Scholar 

  51. Kim, Y. et al. Methoxy-functionalized triarylamine-based hole-transporting polymers for highly efficient and stable perovskite solar cells. ACS Energy Lett. 5, 3304–3313 (2020).

    Article  Google Scholar 

  52. Park, S. J. et al. Inverted planar perovskite solar cells with dopant free hole transporting material: Lewis base-assisted passivation and reduced charge recombination. J. Mater. Chem. A 5, 13220–13227 (2017).

    Article  Google Scholar 

  53. Meier de Andrade, A., Kullgren, J. & Broqvist, P. Quantitative and qualitative performance of density functional theory rationalized by reduced density gradient distributions. Phys. Rev. B 102, 075115 (2020).

    Article  ADS  Google Scholar 

  54. Surov, A. O. et al. Specific features of supramolecular organisation and hydrogen bonding in proline cocrystals: a case study of fenamates and diclofenac. CrystEngComm 20, 6970–6981 (2018).

    Article  Google Scholar 

  55. Frisch, M. J. et al. Gaussian 16, Revision C.01 (Gaussian, 2016).

  56. Becke, A. D. Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    Article  ADS  Google Scholar 

  57. Martínez, L., Andrade, R., Birgin, E. G. & Martínez, J. M. PACKMOL: a package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 30, 2157–2164 (2009).

    Article  Google Scholar 

  58. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  ADS  Google Scholar 

  59. Tkatchenko, A. & Scheffler, M. Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Phys. Rev. Lett. 102, 073005 (2009).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP; 2021R1A2C3004202), the Wearable Platform Materials Technology Center (2016R1A5A1009926) funded by the Korean Government (MSIT), the Technology Development Program to Solve Climate Changes of the National Research Foundation (NRF) funded by the Ministry of Science, ICT and Future Planning (2020M1A2A2080746), and the Research Project funded by Ulsan City (1.210058.01) of UNIST (Ulsan National Institute of Science and Technology), Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government (MOTIE) (20193091010460, Development of Super Solar cells for overcoming the theoretical limit of silicon solar cell efficiency (>30%)), the Development Program of the Korea Institute of Energy Research (KIER; C1-2401 and C1-2402).

Author information

Authors and Affiliations

Authors

Contributions

C.Y., D.S.K. and C.-W.L. conceptualized and supervised the project. J.-H.B. advised on the research. M.J. and S.J. synthesized and characterized the HTM materials. I.W.C. fabricated and characterized the perovskite films and solar cells and carried out the stability test. K.Y. performed the molecular simulations. M.K. performed the SCLC measurements. S.J.C. and Y.J. carried out TRPL measurements. Y.C. performed contact angle measurements. J.-H.A. carried out conductivity measurements. H.-B.K. fabricated the large-area module. S.-H.K. performed the NMR measurements. C.Y., D.S.K. and M.J. wrote the manuscript and all authors reviewed the manuscript.

Corresponding authors

Correspondence to Chan-Woo Lee, Dong Suk Kim or Changduk Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Nazario Martin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Figs. 1–31 and Tables 1–5.

Reporting Summary

Supplementary Video 1

Perovskite solar module PCE measurement video.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, M., Choi, I.W., Yim, K. et al. Large-area perovskite solar cells employing spiro-Naph hole transport material. Nat. Photon. 16, 119–125 (2022). https://doi.org/10.1038/s41566-021-00931-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-021-00931-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing