Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Immediate Communication
  • Published:

Integrative analyses prioritize GNL3 as a risk gene for bipolar disorder

Abstract

Genome-wide association studies (GWASs) have identified numerous single nucleotide polymorphisms (SNPs) associated with bipolar disorder (BD), but what the causal variants are and how they contribute to BD is largely unknown. In this study, we used FUMA, a GWAS annotation tool, to pinpoint potential causal variants and genes from the latest BD GWAS findings, and performed integrative analyses, including brain expression quantitative trait loci (eQTL), gene coexpression network, differential gene expression, protein-protein interaction, and brain intermediate phenotype association analysis to identify the functions of a prioritized gene and its connection to BD. Convergent lines of evidence prioritized protein-coding gene G Protein Nucleolar 3 (GNL3) as a BD risk gene, with integrative analyses revealing GNL3’s roles in cell proliferation, neuronal functions, and brain phenotypes. We experimentally revealed that BD-related eQTL SNPs rs10865973, rs12635140, and rs4687644 regulate GNL3 expression using dual luciferase reporter assay and CRISPR interference experiment in human neural progenitor cells. We further identified that GNL3 knockdown and overexpression led to aberrant neuronal proliferation and differentiation, using two-dimensional human neural cell cultures and three-dimensional forebrain organoid model. This study gathers evidence that BD-related genetic variants regulate GNL3 expression which subsequently affects neuronal proliferation and differentiation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Summary results for DLRA and CRISPRi experiments in hNPCs.
Fig. 2: Effects of GNL3 knockdown and overexpression on proliferation and neuron differentiation of hNPCs.
Fig. 3: Effects of GNL3 knockdown and overexpression in human forebrain organoid model.

Similar content being viewed by others

References

  1. Mcguffin P, Rijsdijk F, Andrew M, Sham P, Katz R, Cardno A. The heritability of bipolar affective disorder and the genetic relationship to unipolar depression. Arch Gen Psychiatry. 2003;60:497.

    PubMed  Google Scholar 

  2. Barnett JH, Smoller JW. The genetics of bipolar disorder. Neuroscience 2009;164:331–43.

    CAS  PubMed  Google Scholar 

  3. Gordovez FJA, McMahon FJ. The genetics of bipolar disorder. Mol Psychiatry 2020;25:544–59.

    PubMed  Google Scholar 

  4. Li M, Jaffe AE, Straub RE, Tao R, Shin JH, Wang Y, et al. A human-specific AS3MT isoform and BORCS7 are molecular risk factors in the 10q24.32 schizophrenia-associated locus. Nat Med 2016;22:649–56.

    CAS  PubMed  Google Scholar 

  5. Huo Y, Li S, Liu J, Li X, Luo XJ. Functional genomics reveal gene regulatory mechanisms underlying schizophrenia risk. Nat Commun 2019;10:670.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Breen G, Li Q, Roth BL, O’Donnell P, Didriksen M, Dolmetsch R, et al. Translating genome-wide association findings into new therapeutics for psychiatry. Nat Neurosci 2016;19:1392.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Do C, Shearer A, Suzuki M, Terry MB, Gelernter J, Greally JM, et al. Genetic–epigenetic interactions in cis: a major focus in the post-GWAS era. Genome Biol 2017;18:120.

    PubMed  PubMed Central  Google Scholar 

  8. Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H, et al. Systematic localization of common disease-associated variation in regulatory DNA. Science 2012;337:1190.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Degner JF, Pai AA, Pique-Regi R, Veyrieras JB, Gaffney DJ, Pickrell JK, et al. DNaseI sensitivity QTLs are a major determinant of human expression variation. Nature 2012;482:390–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Nicolae DL, Gamazon E, Zhang W, Duan S, Dolan ME, Cox NJ. Trait-associated SNPs are more likely to be eQTLs: annotation to enhance discovery from GWAS. PLoS Genet 2010;6:e1000888.

    PubMed  PubMed Central  Google Scholar 

  11. Gamazon ER, Badner JA, Cheng L, Zhang C, Zhang D, Cox NJ, et al. Enrichment of Cis-regulatory gene expression SNPs and methylation quantitative trait loci among bipolar disorder susceptibility variants. Mol Psychiatry 2013;18:340.

    CAS  PubMed  Google Scholar 

  12. Schrode N, Ho SM, Yamamuro K, Dobbyn A, Huckins L, Matos MR, et al. Synergistic effects of common schizophrenia risk variants. Nat Genet 2019;51:1475–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Forrest MP, Zhang H, Moy W, McGowan H, Leites C, Dionisio LE, et al. Open chromatin profiling in hiPSC-derived neurons prioritizes functional noncoding psychiatric risk variants and highlights neurodevelopmental Loci. Cell Stem Cell. 2017;21:305–18 e8.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Jiang X, Detera-Wadleigh SD, Akula N, Mallon BS, Hou L, Xiao T, et al. Sodium valproate rescues expression of TRANK1 in iPSC-derived neural cells that carry a genetic variant associated with serious mental illness. Mol Psychiatry 2019;24:613–24.

    CAS  PubMed  Google Scholar 

  15. Stahl EA, Breen G, Forstner AJ, McQuillin A, Ripke S, Trubetskoy V, et al. Genome-wide association study identifies 30 loci associated with bipolar disorder. Nat Genet 2019;51:793–803.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Watanabe K, Taskesen E, van Bochoven A, Posthuma D. Functional mapping and annotation of genetic associations with FUMA. Nat Commun 2017;8:1826.

    PubMed  PubMed Central  Google Scholar 

  17. The GTEx Consortium. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 2015;348:648–60.

    Google Scholar 

  18. Ramasamy A, Trabzuni D, Guelfi S, Varghese V, Smith C, Walker R, et al. Genetic variability in the regulation of gene expression in ten regions of the human brain. Nat Neurosci 2014;17:1418–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Akbarian S, Liu C, Knowles JA, Vaccarino FM, Farnham PJ, Crawford GE, et al. The PsychENCODE project. Nat Neurosci 2015;18:1707–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Jaffe AE, Straub RE, Shin JH, Tao R, Gao Y, Collado-Torres L, et al. Developmental and genetic regulation of the human cortex transcriptome illuminate schizophrenia pathogenesis. Nat Neurosci 2018;21:1117–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. O’Brien HE, Hannon E, Hill MJ, Toste CC, Robertson MJ, Morgan JE, et al. Expression quantitative trait loci in the developing human brain and their enrichment in neuropsychiatric disorders. Genome Biol 2018;19:194.

    PubMed  PubMed Central  Google Scholar 

  22. Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, Heravimoussavi A, et al. Integrative analysis of 111 reference human epigenomes. Nature 2015;518:317–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Schmitt AD, Hu M, Jung I, Xu Z, Qiu Y, Tan CL, et al. A compendium of chromatin contact maps reveal spatially active regions in the human genome. Cell Rep. 2016;17:2042–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE, et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 2013;154:442–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Mandegar MA, Huebsch N, Frolov EB, Shin E, Truong A, Olvera MP, et al. CRISPR interference efficiently induces specific and reversible gene silencing in human iPSCs. Cell Stem Cell. 2016;18:541–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Gandal MJ, Zhang P, Hadjimichael E, Walker RL, Chen C, Liu S, et al. Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder. Science. 2018;362:eaat8127

  27. Madison JM, Zhou F, Nigam A, Hussain A, Barker DD, Nehme R, et al. Characterization of bipolar disorder patient-specific induced pluripotent stem cells from a family reveals neurodevelopmental and mRNA expression abnormalities. Mol Psychiatry 2015;20:703.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kathuria A, Lopez-Lengowski K, Vater M, McPhie D, Cohen BM, Karmacharya R. Transcriptome analysis and functional characterization of cerebral organoids in bipolar disorder. Genome Med 2020;12:34.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Parikshak NN, Luo R, Zhang A, Won H, Lowe JK, Chandran V, et al. Integrative functional genomic analyses implicate specific molecular pathways and circuits in autism. Cell 2013;155:1008–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Li T, Wernersson R, Hansen RB, Horn H, Mercer J, Slodkowicz G, et al. A scored human protein-protein interaction network to catalyze genomic interpretation. Nat Methods 2017;14:61–4.

    CAS  PubMed  Google Scholar 

  31. Seo S, Richardson GA, Kroll KL. The SWI/SNF chromatin remodeling protein Brg1 is required for vertebrate neurogenesis and mediates transactivation of Ngn and NeuroD. Development 2005;132:105–15.

    CAS  PubMed  Google Scholar 

  32. Vita A, De Peri L, Sacchetti E. Gray matter, white matter, brain, and intracranial volumes in first-episode bipolar disorder: a meta-analysis of magnetic resonance imaging studies. Bipolar Disord. 2009;11:807–14.

    PubMed  Google Scholar 

  33. Hibar DP, Westlye LT, van Erp TG, Rasmussen J, Leonardo CD, Faskowitz J, et al. Subcortical volumetric abnormalities in bipolar disorder. Mol Psychiatry 2016;21:1710–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. de Zwarte SMC, Brouwer RM, Agartz I, Alda M, Aleman A, Alpert KI, et al. The Association between familial risk and brain abnormalities is disease specific: an ENIGMA-relatives study of schizophrenia and bipolar disorder. Biol Psychiatry 2019;86:545–56.

    PubMed  PubMed Central  Google Scholar 

  35. Adams HH, Hibar DP, Chouraki V, Stein JL, Nyquist PA, Renteria ME, et al. Novel genetic loci underlying human intracranial volume identified through genome-wide association. Nat Neurosci 2016;19:1569–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Satizabal CL, Adams HHH, Hibar DP, White CC, Knol MJ, Stein JL, et al. Genetic architecture of subcortical brain structures in 38,851 individuals. Nat Genet 2019;51:1624–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Rasetti R, Weinberger DR. Intermediate phenotypes in psychiatric disorders. Curr Opin Genet Dev. 2011;21:340–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Tamminga CA, Ivleva EI, Keshavan MS, Pearlson GD, Clementz BA, Witte B, et al. Clinical phenotypes of psychosis in the Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP). Am J Psychiatry. 2013;170:1263–74.

    PubMed  Google Scholar 

  39. Jew B, Alvarez M, Rahmani E, Miao Z, Ko A, Garske KM, et al. Accurate estimation of cell composition in bulk expression through robust integration of single-cell information. Nat Commun 2020;11:1971.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang N, Hoffman EP, Chen L, Chen L, Zhang Z, Liu C, et al. Mathematical modelling of transcriptional heterogeneity identifies novel markers and subpopulations in complex tissues. Sci Rep. 2016;6:18909.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Meng L, Lin T, Tsai RY. Nucleoplasmic mobilization of nucleostemin stabilizes MDM2 and promotes G2-M progression and cell survival. J Cell Sci. 2008;121:4037–46.

    CAS  PubMed  Google Scholar 

  42. Farioli-Vecchioli S, Saraulli D, Costanzi M, Leonardi L, Cina I, Micheli L, et al. Impaired terminal differentiation of hippocampal granule neurons and defective contextual memory in PC3/Tis21 knockout mice. PLoS ONE 2009;4:e8339.

    PubMed  PubMed Central  Google Scholar 

  43. Lancaster MA, Renner M, Martin CA, Wenzel D, Bicknell LS, Hurles ME, et al. Cerebral organoids model human brain development and microcephaly. Nature 2013;501:373–9.

    CAS  PubMed  Google Scholar 

  44. Qian X, Nguyen HN, Song MM, Hadiono C, Ogden SC, Hammack C, et al. Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell 2016;165:1238–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Scott LJ, Muglia P, Kong XQ, Guan W, Flickinger M, Upmanyu R, et al. Genome-wide association and meta-analysis of bipolar disorder in individuals of European ancestry. Proc Natl Acad Sci USA. 2009;106:7501–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Mcmahon FJ, Akula N, Schulze TG, Muglia P, Tozzi F, Deterawadleigh SD, et al. Meta-analysis of genome-wide association data detects a risk locus for major mood disorders on chromosome 3p21.1. Nat Genet 2010;42:128–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Goes FS, Hamshere ML, Seifuddin F, Pirooznia M, Belmontemahon P, Breuer R, et al. Genome-wide association of mood-incongruent psychotic bipolar disorder. Transl Psychiatry 2012;2:e180.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhao H, Nyholt DR. Gene-based analyses reveal novel genetic overlap and allelic heterogeneity across five major psychiatric disorders. Hum Genet 2017;136:263–74.

    CAS  PubMed  Google Scholar 

  49. Barbeira AN, Dickinson SP, Bonazzola R, Zheng J, Wheeler HE, Torres JM, et al. Exploring the phenotypic consequences of tissue specific gene expression variation inferred from GWAS summary statistics. Nat Commun 2018;9:1825.

    PubMed  PubMed Central  Google Scholar 

  50. Huckins L, Dobbyn A, McFadden W, Wang W, Ruderfer D, Hoffman G, et al. Transcriptomic imputation of bipolar disorder and bipolar subtypes reveals 29 novel associated genes. bioRxiv. 2017.

  51. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature 2014;511:421–7.

    PubMed Central  Google Scholar 

  52. Kim Y, Xia K, Tao R, Giusti-Rodriguez P, Vladimirov V, van den Oord E, et al. A meta-analysis of gene expression quantitative trait loci in brain. Transl Psychiatry 2014;4:e459.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Li Z, Chen J, Yu H, He L, Xu Y, Zhang D, et al. Genome-wide association analysis identifies 30 new susceptibility loci for schizophrenia. Nat Genet 2017;49:1576–83.

    CAS  PubMed  Google Scholar 

  54. Yang Z, Zhou D, Li H, Cai X, Liu W, Wang L, et al. The genome-wide risk alleles for psychiatric disorders at 3p21.1 show convergent effects on mRNA expression, cognitive function, and mushroom dendritic spine. Mol Psychiatry 2020;25:48–66.

    CAS  PubMed  Google Scholar 

  55. Huckins LM, Dobbyn A, Ruderfer DM, Hoffman G, Wang W, Pardinas AF, et al. Gene expression imputation across multiple brain regions provides insights into schizophrenia risk. Nat Genet 2019;51:659–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Gusev A, Mancuso N, Won H, Kousi M, Finucane HK, Reshef Y, et al. Transcriptome-wide association study of schizophrenia and chromatin activity yields mechanistic disease insights. Nat Genet 2018;50:538–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Gandal MJ, Haney JR, Parikshak NN, Leppa V, Ramaswami G, Hartl C, et al. Shared molecular neuropathology across major psychiatric disorders parallels polygenic overlap. Science 2018;359:693–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Tsai RY, McKay RD. A nucleolar mechanism controlling cell proliferation in stem cells and cancer cells. Genes Dev. 2002;16:2991–3003.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Meng L, Lin T, Peng G, Hsu JK, Lee S, Lin SY, et al. Nucleostemin deletion reveals an essential mechanism that maintains the genomic stability of stem and progenitor cells. Proc Natl Acad Sci USA. 2013;110:11415–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Barresi MJ, Burton S, Dipietrantonio K, Amsterdam A, Hopkins N, Karlstrom RO. Essential genes for astroglial development and axon pathfinding during zebrafish embryogenesis. Dev Dyn 2010;239:2603–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Yaghoobi MM, Mowla SJ, Tiraihi T. Nucleostemin, a coordinator of self-renewal, is expressed in rat marrow stromal cells and turns off after induction of neural differentiation. Neurosci Lett. 2005;390:81–6.

    CAS  PubMed  Google Scholar 

  62. Boyle AP, Hong EL, Hariharan M, Cheng Y, Schaub MA, Kasowski M, et al. Annotation of functional variation in personal genomes using RegulomeDB. Genome Res 2012;22:1790.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Ernst J, Kellis M. ChromHMM: automating chromatin-state discovery and characterization. Nat Methods 2012;9:215–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Delaneau O, Zazhytska M, Borel C, Giannuzzi G, Rey G, Howald C, et al. Chromatin three-dimensional interactions mediate genetic effects on gene expression. Science. 2019;364:eaat8266

  65. Meng Q, Wang K, Brunetti T, Xia Y, Jiao C, Dai R, et al. The DGCR5 long noncoding RNA may regulate expression of several schizophrenia-related genes. Sci Transl Med. 2018;10:eaat6912

  66. Zheng Y, Shen W, Zhang J, Yang B, Liu YN, Qi H, et al. CRISPR interference-based specific and efficient gene inactivation in the brain. Nat Neurosci 2018;21:447–54.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Ney Alliey-Rodriguez for sharing the BSNIP data and appreciate professor Jun Yao for providing the CRISPRi plasmid. We also thank Tao Zhou for helping take the confocal microscopy images. We appreciate Linlin Chen, Qin Zhao and Chunjiang Zhu for aiding in the karyotype analysis. We also acknowledge Liz Kuney for editing the manuscript. This work was supported by the Natural Science Foundation of China (NSFC) grants (Nos. 31970572, 31871276, 31571312, 81901359, and 81401114), the National Key R&D Project of China grants (Nos. 2016YFC1306000 and 2017YFC0908701), the Natural Science Foundation of Hunan Province grant (No. 2019JJ40404), Innovation-Driven Project of Central South University grants (Nos. 2015CXS034, 2018CX033, and 2020CX003), and NIH grants 1 U01 MH103340-01, 1R01ES024988. Data were generated as part of the PsychENCODE Consortium, supported by U01MH103392, U01MH103365, U01MH103346, U01MH103340, U01MH103339, R21MH109956, R21MH105881, R21MH105853, R21MH103877, R21MH102791, R01MH111721, R01MH110928, R01MH110927, R01MH110926, R01MH110921, R01MH110920, R01MH110905, R01MH109715, R01MH109677, R01MH105898, R01MH105898, R01MH094714, and P50MH106934 awarded to S.A. (Icahn School of Medicine at Mount Sinai), G.C. (Duke University), S.D. (Icahn School of Medicine at Mount Sinai), P.F. (University of Southern California), M.G. (Yale University), D.G. (University of California, Los Angeles), F.G. (Johns Hopkins University), T.M.H. (Lieber Institute for Brain Development), A.J. (Lieber Institute for Brain Development), J.A.K. (University of Southern California), C.L. (SUNY Upstate Medical University), D.P. (Icahn School of Medicine at Mount Sinai), P.R. (Icahn School of Medicine at Mount Sinai), S.S. (University of California, San Francisco), N.S. (Yale University), P.S. (Icahn School of Medicine at Mount Sinai), M.S. (University of California, San Francisco), P.S. (University of North Carolina), F.V. (Yale University), D.W. (Lieber Institute for Brain Development), S.W. (Yale University), K.W. (University of Chicago), J.W. (University of California, San Francisco), and P.Z. (Johns Hopkins University).

Author information

Authors and Affiliations

Authors

Contributions

QM initiated the study and wrote the paper, did the FUMA analysis, CRISPRi experiment, neuron differentiation assay, as well as the human forebrain organoid induction assay. YJ, did the eQTL analysis. LW, ZR, and FD, did the DLRA, cell proliferation and cell cycle experiments. RD, and KW, performed the WGCNA and cell-type deconvolution analysis. YX, performed the association analysis between eSNPs and brain intermediate phenotypes. SL, conducted the differential gene expression analysis. JW, did the immunofluorescence staining analysis. CL, and CC, supervised the study and revised the paper.

Corresponding authors

Correspondence to Qingtuan Meng, Chunyu Liu or Chao Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, Q., Wang, L., Dai, R. et al. Integrative analyses prioritize GNL3 as a risk gene for bipolar disorder. Mol Psychiatry 25, 2672–2684 (2020). https://doi.org/10.1038/s41380-020-00866-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-020-00866-5

This article is cited by

Search

Quick links