Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The role of modifications in codon discrimination by tRNALysUUU

Abstract

The natural modification of specific nucleosides in many tRNAs is essential during decoding of mRNA by the ribosome. For example, tRNALysUUU requires the modification N6-threonylcarbamoyladenosine at position 37 (t6A37), adjacent and 3′ to the anticodon, to bind AAA in the A site of the ribosomal 30S subunit. Moreover, it can only bind both AAA and AAG lysine codons when doubly modified with t6A37 and either 5-methylaminomethyluridine or 2-thiouridine at the wobble position (mnm5U34 or s2U34). Here we report crystal structures of modified tRNA anticodon stem-loops bound to the 30S ribosomal subunit with lysine codons in the A site. These structures allow the rationalization of how modifications in the anticodon loop enable decoding of both lysine codons AAA and AAG.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ASL sequence and modified nucleoside structures.
Figure 2: 2FoFc density for the t6A37.
Figure 3: Stacking interactions of t6A37.
Figure 4: mnm5U·G, U-A and U·G base pairs.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Ogle, J.M., Carter, A.P. & Ramakrishnan, V. Insights into the decoding mechanism from recent ribosome structures. Trends Biochem. Sci. 28, 259–266 (2003).

    Article  CAS  Google Scholar 

  2. Ogle, J.M. et al. Recognition of cognate transfer RNA by the 30S ribosomal subunit. Science 292, 897–902 (2001).

    Article  CAS  Google Scholar 

  3. Ogle, J.M., Murphy, F.V., Tarry, M.J. & Ramakrishnan, V. Selection of tRNA by the ribosome requires a transition from an open to a closed form. Cell 111, 721–732 (2002).

    Article  CAS  Google Scholar 

  4. Crick, F.H.C. Codon-anticodon pairing: the wobble hypothesis. J. Mol. Biol. 19, 548–555 (1966).

    Article  CAS  Google Scholar 

  5. Yarian, C. et al. Modified nucleoside dependent Watson-Crick and wobble codon binding by tRNALysUUU species. Biochemistry 39, 13390–13395 (2000).

    Article  CAS  Google Scholar 

  6. Agris, P.F. Decoding the genome: a modified view. Nucleic Acids Res. 32, 223–238 (2004).

    Article  CAS  Google Scholar 

  7. Sprinzl, M., Horn, C., Brown, M., Loudovitch, A. & Steinberg, S. Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res. 26, 148–153 (1998).

    Article  CAS  Google Scholar 

  8. Krüger, M.K., Pedersen, S., Hagervall, T.G. & Sørensen, M.A. The modification of the wobble base of tRNAGlu modulates the translation rate of glutamic acid codons in vivo. J. Mol. Biol. 284, 621–631 (1998).

    Article  Google Scholar 

  9. Yarian, C. et al. Accurate translation of the genetic code depends on tRNA modified nucleosides. J. Biol. Chem. 277, 16391–16395 (2002).

    Article  CAS  Google Scholar 

  10. Urbonavicius, J., Qian, Q., Durand, J.M., Hagervall, T.G. & Björk, G.R. Improvement of reading frame maintenance is a common function for several tRNA modifications. EMBO J. 20, 4863–4873 (2001).

    Article  CAS  Google Scholar 

  11. Phelps, S.S., Malkiewicz, A., Agris, P.F. & Joseph, S. Modified nucleotides in tRNALys and tRNAVal are important for translocation. J. Mol. Biol. 338, 439–444 (2004).

    Article  CAS  Google Scholar 

  12. Björk, G.R. In tRNA: Structure, Biosynthesis and Function (eds. Söll, D. & RajBhandary, U.) 165–205 (American Society for Microbiology, Washington, DC, 1995).

    Book  Google Scholar 

  13. von Ahsen, U., Green, R., Schroeder, R. & Noller, H.F. Identification of 2′-hydroxyl groups required for interaction of a tRNA anticodon stem-loop region with the ribosome. RNA 3, 49–56 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Phelps, S.S., Jerinic, O. & Joseph, S. Universally conserved interactions between the ribosome and the anticodon stem-loop of A site tRNA important for translocation. Mol. Cell 10, 799–807 (2002).

    Article  CAS  Google Scholar 

  15. Parthasarathy, R., Ohrt, J.M. & Chheda, G.B. Modified nucleosides and conformation of anticodon loops: crystal structure of t6A and g6A. Biochemistry 16, 4999–5008 (1977).

    Article  CAS  Google Scholar 

  16. Stuart, J.W. et al. Functional anticodon architecture of human tRNALys3 includes disruption of intraloop hydrogen bonding by the naturally occurring amino acid modification, t6A. Biochemistry 39, 13396–13404 (2000).

    Article  CAS  Google Scholar 

  17. Bénas, P. et al. The crystal structure of HIV reverse-transcription primer tRNA(Lys,3) shows a canonical anticodon loop. RNA 6, 1347–1355 (2000).

    Article  Google Scholar 

  18. Grosjean, H., Söll, D. & Crothers, D.M. Studies of the complex between transfer RNAs with complementary anticodons. J. Mol. Biol. 103, 499–519 (1976).

    Article  CAS  Google Scholar 

  19. Konevega, A.L. et al. Purine bases at position 37 of tRNA stabilize codon-anticodon interaction in the ribosomal A site by stacking and Mg2+-dependent interactions. RNA 10, 90–101 (2004).

    Article  CAS  Google Scholar 

  20. Chou, S.-H. & Tseng, Y.-Y. Cross-strand purine-pyrimidine stack and sheared purine·pyrimidine pairing in the human HIV-1 reverse transcriptase inhibitors. J. Mol. Biol. 285, 41–48 (1999).

    Article  CAS  Google Scholar 

  21. Serra, M.J. & Turner, D.H. Predicting thermodynamic properties of RNA. Methods Enzymol. 259, 242–261 (1995).

    Article  CAS  Google Scholar 

  22. Saenger, W. Principles of Nucleic Acid Structure (Springer, New York, 1984).

    Book  Google Scholar 

  23. Battle, D.J. & Doudna, J.A. Specificity of RNA-RNA helix recognition. Proc. Natl. Acad. Sci. USA 99, 11676–11681 (2002).

    Article  CAS  Google Scholar 

  24. Agris, P.F. Wobble position modified nucleosides evolved to select transfer RNA codon recognition: a modified-wobble hypothesis. Biochimie 73, 1345–1349 (1991).

    Article  CAS  Google Scholar 

  25. Freier, S.M. et al. Improved free-energy parameters for predictions of RNA duplex stability. Proc. Natl. Acad. Sci. USA 83, 9373–9377 (1986).

    Article  CAS  Google Scholar 

  26. Sundaram, M., Durant, P.C. & Davis, D.R. Hypermodified nucleosides in the anticodon of tRNALys stabilize a canonical U-turn structure. Biochemistry 39, 12575–12584 (2000).

    Article  CAS  Google Scholar 

  27. Yokoyama, S. & Nishimura, S. In tRNA: Structure, Biosynthesis, and Function (eds. Söll, D. & RajBhandary, U.) 207–223 (American Society for Microbiology, Washington, DC, 1995).

    Book  Google Scholar 

  28. Takai, K. & Yokoyama, S. Roles of 5-substituents of tRNA wobble uridines in the recognition of purine-ending codons. Nucleic Acids Res. 31, 6383–6391 (2003).

    Article  CAS  Google Scholar 

  29. Auffinger, P. & Westhof, E. Singly and bifurcated hydrogen-bonded base-pairs in tRNA anticodon hairpins and ribozymes. J. Mol. Biol. 292, 467–483 (1999).

    Article  CAS  Google Scholar 

  30. Yang, J. & Gellman, S.H. Energetic superiority of two-center hydrogen bonding relative to three-center hydrogen bonding in a model system. J. Am. Chem. Soc. 120, 9090–9091 (1998).

    Article  CAS  Google Scholar 

  31. Mizuno, H. & Sundaralingam, M. Stacking of Crick wobble pair and Watson-Crick pair: stability rules of G-U pairs at ends of helical stems in tRNAs and the relation to codon-anticodon wobble interaction. Nucleic Acids Res. 5, 4451–4461 (1978).

    Article  CAS  Google Scholar 

  32. Chen, X., McDowell, J.A., Kierzek, R., Krugh, T.R. & Turner, D.H. Nuclear magnetic resonance spectroscopy and molecular modeling reveal that different hydrogen bonding patterns are possible for G·U pairs: one hydrogen bond for each G·U pair in r(GGCGUGCC)2 and two for each G·U pair in r(GAGUGCUC)2. Biochemistry 39, 8970–8982 (2000).

    Article  CAS  Google Scholar 

  33. Rodnina, M.V. & Wintermeyer, W. Fidelity of aminoacyl-tRNA selection on the ribosome: kinetic and structural mechanisms. Annu. Rev. Biochem. 70, 415–435 (2001).

    Article  CAS  Google Scholar 

  34. Clemons, W.M. Jr. et al. Crystal structure of the 30 S ribosomal subunit from Thermus thermophilus: purification, crystallization and structure determination. J. Mol. Biol. 310, 827–843 (2001).

    Article  CAS  Google Scholar 

  35. Ogilvie, K.K., Usman, N., Nicoghosian, K. & Cedergren, R.J. Total chemical synthesis of a 77-nucleotide-long RNA sequence having methionine-acceptance activity. Proc. Natl. Acad. Sci. USA 85, 5764–5768 (1988).

    Article  CAS  Google Scholar 

  36. Agris, P.F. et al. Site-selected introduction of modified purine and pyrimidine ribonucleosides into RNA by automated phosphoramidite chemistry. Biochimie 77, 125–134 (1995).

    Article  CAS  Google Scholar 

  37. Faulstich, K., Wörner, K., Brill, H. & Engels, J.W. A sequencing method for RNA oligonucleotides based on mass spectrometry. Anal. Chem. 69, 4349–4353 (1997).

    Article  CAS  Google Scholar 

  38. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276A, 307–326 (1997).

    Article  Google Scholar 

  39. Ravelli, R.B.G., Sweet, R.M., Skinner, J.M., Duisenberg, A.J.M. & Kroon, J. STRATEGY: a program to optimize the starting spindle angle and scan range for X-ray data collection. J. Appl. Cryst. 30, 551–554 (1997).

    Article  CAS  Google Scholar 

  40. Brünger, A.T. et al. Crystallography & NMR System: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  Google Scholar 

  41. Kleywegt, G.J. & Jones, T.A. Databases in protein crystallography. Acta Crystallogr. D 54, 1119–1131 (1998).

    Article  CAS  Google Scholar 

  42. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  43. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  44. Koradi, R., Billeter, M. & Wüthrich, K. MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graph. 14, 51–55 (1996).

    Article  CAS  Google Scholar 

  45. Schneider, T.R. A genetic algorithm for the identification of conformationally invariant regions in protein molecules. Acta Crystallogr. D 58, 195–208 (2002).

    Article  Google Scholar 

  46. Lu, X.J. & Olson, W.K. 3DNA: a software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures. Nucleic Acids Res. 31, 5108–5121 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the contributions of W. Czestkowski for his modified nucleoside synthetic work, W. Graham for his purification of the doubly modified ASL, M. DeRider for contributions to structural modeling and J. Ogle for comments on the manuscript. This work was funded by the Medical Research Council, UK, US National Institutes of Health (NIH) grant GM67624 and a grant from the Agouron Institute (V.R.); US National Science Foundation grant MCB9986011 and NIH grant GM23037 (P.F.A.); and by the grant KBN 7TO9A01721 (A.M.). F.V.M. was supported by a European Molecular Biology Organization long term fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Venki Ramakrishnan or Paul F Agris.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murphy, F., Ramakrishnan, V., Malkiewicz, A. et al. The role of modifications in codon discrimination by tRNALysUUU. Nat Struct Mol Biol 11, 1186–1191 (2004). https://doi.org/10.1038/nsmb861

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb861

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing