Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CDK1 and calcineurin regulate Maskin association with eIF4E and translational control of cell cycle progression

Abstract

Maskin regulates assembly of the eIF4F translation initiation complex on messenger RNAs that contain cytoplasmic polyadenylation elements (CPEs) in their 3′ untranslated regions. Because Maskin and eIF4G contain similar peptide motifs that bind eIF4E, they compete for occupancy of this factor and consequently control translation. One mRNA that is regulated by Maskin encodes cyclin B1, whose translation oscillates with the early cell cycles of Xenopus laevis embryos. Here we show that Maskin phosphorylation-dephosphorylation also oscillates with the cell cycle and is controlled by the kinase CDK1 and the phosphatase calcineurin. These phosphorylation events control the Maskin-eIF4E interaction and, as a result, translation of cyclin B1 mRNA. Cell cycle progression requires this Maskin-mediated translational regulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Maskin interaction with eIF4E oscillates with the cell cycle.
Figure 2: Maskin phosphorylation oscillates with the cell cycle.
Figure 3: Two-dimensional phosphopeptide maps of Maskin during the cell cycle.
Figure 4: Calcineurin interacts with thiophosphorylated Maskin.
Figure 5: CaN controls Maskin phosphorylation and interaction with eIF4E.
Figure 6: Model for oscillating translation during the early Xenopus cell cycles.

Similar content being viewed by others

References

  1. Gingras, A.C. et al. Regulation of 4E–BP1 phosphorylation: a novel two-step mechanism. Genes Dev. 13, 1422–1437 (1999).

    Article  CAS  Google Scholar 

  2. Gingras, A.C. et al. Hierarchical phosphorylation of the translation inhibitor 4E–BP1. Genes Dev. 15, 2852–2864 (2001).

    Article  CAS  Google Scholar 

  3. Koromilas, A.E., Lazaris-Karatzas, A. & Sonenberg, N. mRNAs containing extensive secondary structure in their 5′ non-coding region translate efficiently in cells overexpressing initiation factor eIF-4E. EMBO J. 11, 4153–4158 (1992).

    Article  CAS  Google Scholar 

  4. Sonenberg, N. Translation factors are effectors of cell growth and tumorigenesis. Curr. Opin. Cell Biol. 5, 955–960 (1993).

    Article  CAS  Google Scholar 

  5. Stebbins-Boaz, B., Cao, Q., de Moor, C.H., Mendez, R. & Richter, J.D. Maskin is a CPEB-associated factor that transiently interacts with elF-4E. Mol. Cell 4, 1017–1027 (1999).

    Article  CAS  Google Scholar 

  6. Nelson, M.R., Leidal, A.M. & Smibert, C.A. Drosophila Cup is an eIF4E-binding protein that functions in Smaug-mediated translational repression. EMBO J. 23, 150–159 (2004).

    Article  CAS  Google Scholar 

  7. Wilhelm, J.E., Hilton, M., Amos, Q. & Henzel, W.J. Cup is an eIF4E binding protein required for both the translational repression of oskar and the recruitment of Barentsz. J. Cell Biol. 163, 1197–1204 (2003).

    Article  CAS  Google Scholar 

  8. Nakamura, A., Sato, K. & Hanyu-Nakamura, K. Drosophila cup is an eIF4E binding protein that associates with Bruno and regulates oskar mRNA translation in oogenesis. Dev. Cell 6, 69–78 (2004).

    Article  CAS  Google Scholar 

  9. Jung, M.Y., Lorenz, L. & Richter, J.D. Translational control by neuroguidin, a eukaryotic initiation factor 4E and CPEB binding protein. Mol. Cell. Biol. 26, 4277–4287 (2006).

    Article  CAS  Google Scholar 

  10. Cao, Q. & Richter, J.D. Dissolution of the maskin-eIF4E complex by cytoplasmic polyadenylation and poly(A)-binding protein controls cyclin B1 mRNA translation and oocyte maturation. EMBO J. 21, 3852–3862 (2002).

    Article  CAS  Google Scholar 

  11. Barnard, D.C., Cao, Q. & Richter, J.D. Differential phosphorylation controls Maskin association with eukaryotic translation initiation factor 4E and localization on the mitotic apparatus. Mol. Cell. Biol. 25, 7605–7615 (2005).

    Article  CAS  Google Scholar 

  12. Groisman, I., Jung, M.Y., Sarkissian, M., Cao, Q. & Richter, J.D. Translational control of the embryonic cell cycle. Cell 109, 473–483 (2002).

    Article  CAS  Google Scholar 

  13. Tonks, N.K., Diltz, C.D. & Fischer, E.H. Purification of the major protein-tyrosine-phosphatases of human placenta. J. Biol. Chem. 263, 6722–6730 (1988).

    CAS  PubMed  Google Scholar 

  14. Saneyoshi, T., Kume, S., Natsume, T. & Mikoshiba, K. Molecular cloning and expression profile of Xenopus calcineurin A subunit(1). Biochim. Biophys. Acta 1499, 164–170 (2000).

    Article  CAS  Google Scholar 

  15. Guerini, D. Calcineurin: not just a simple protein phosphatase. Biochem. Biophys. Res. Commun. 235, 271–275 (1997).

    Article  CAS  Google Scholar 

  16. Perrino, B.A. et al. Characterization of the phosphatase activity of a baculovirus-expressed calcineurin A isoform. J. Biol. Chem. 267, 15965–15969 (1992).

    CAS  PubMed  Google Scholar 

  17. Perrino, B.A., Ng, L.Y. & Soderlling, T.R. Calcium regulation of calcineurin phosphatase activity by its B subunit and calmodulin: role of the autoinhibitory domain. J. Biol. Chem. 270, 340–346 (1995).

    Article  CAS  Google Scholar 

  18. King, R.W., Deshaies, R.J., Peters, J.M. & Kirschner, M.W. How proteolysis drives the cell cycle. Science 274, 1652–1659 (1996).

    Article  CAS  Google Scholar 

  19. Fan, H. & Penman, S. Regulation of protein synthesis in mammalian cells. J. Mol. Biol. 50, 655–670 (1970).

    Article  CAS  Google Scholar 

  20. Bonneau, A.M. & Sonenberg, N. Involvement of the 24-kDa cap-binding protein in the regulation of protein synthesis in mitosis. J. Biol. Chem. 262, 11134–11139 (1987).

    CAS  PubMed  Google Scholar 

  21. Qin, X. & Sarnow, P. Preferential translation of internal ribosome entry site-containing mRNAs during the mitotic cycle in mammalian cells. J. Biol. Chem. 279, 13721–13728 (2004).

    Article  CAS  Google Scholar 

  22. Pyronnet, S., Dostie, J. & Sonenberg, N. Suppression of cap-dependent translation in mitosis. Genes Dev. 15, 2083–2093 (2001).

    Article  CAS  Google Scholar 

  23. Cornelis, S. et al. Identification and characterization of a novel cell cycle-regulated internal ribosome entry site. Mol. Cell 5, 597–605 (2000).

    Article  CAS  Google Scholar 

  24. Pyronnet, S., Pradayrol, L. & Sonenberg, N. A cell cycle-dependent internal ribosome entry site. Mol. Cell 5, 607–616 (2000).

    Article  CAS  Google Scholar 

  25. Sachs, A.B. Cell cycle-dependent translation initiation: IRES elements prevail. Cell 101, 243–245 (2000).

    Article  CAS  Google Scholar 

  26. Whitaker, M. Calcium and mitosis. Prog. Cell Cycle Res. 3, 261–269 (1997).

    Article  CAS  Google Scholar 

  27. Tokmakov, A.A., Sato, K.I. & Fukami, Y. Calcium oscillations in Xenopus egg cycling extracts. J. Cell. Biochem. 82, 89–97 (2001).

    Article  CAS  Google Scholar 

  28. Grandin, N. & Charbonneau, M. Intracellular free calcium oscillates during cell division of Xenopus embryos. J. Cell Biol. 112, 711–718 (1991).

    Article  CAS  Google Scholar 

  29. Lindsay, H.D., Whitaker, M.J. & Ford, C.C. Calcium requirements during mitotic cdc2 kinase activation and cyclin degradation in Xenopus egg extracts. J. Cell Sci. 108, 3557–3568 (1995).

    CAS  PubMed  Google Scholar 

  30. Pascreau, G. et al. Phosphorylation of maskin by Aurora-A participates in the control of sequential protein synthesis during Xenopus laevis oocyte maturation. J. Biol. Chem. 280, 13415–13423 (2005).

    Article  CAS  Google Scholar 

  31. Peset, I. et al. Function and regulation of Maskin, a TACC family protein, in microtubule growth during mitosis. J. Cell Biol. 170, 1057–1066 (2005).

    Article  CAS  Google Scholar 

  32. Kinoshita, K. et al. Aurora A phosphorylation of TACC3/maskin is required for centrosome-dependent microtubule assembly in mitosis. J. Cell Biol. 170, 1047–1055 (2005).

    Article  CAS  Google Scholar 

  33. Giet, R. et al. Drosophila Aurora A kinase is required to localize D-TACC to centrosomes and to regulate astral microtubules. J. Cell Biol. 156, 437–451 (2002).

    Article  CAS  Google Scholar 

  34. Groisman, I. et al. CPEB, maskin, and cyclin B1 mRNA at the mitotic apparatus: implications for local translational control of cell division. Cell 103, 435–447 (2000).

    Article  CAS  Google Scholar 

  35. Desai, A., Murray, A., Mitchison, T.J. & Walczak, C.E. The use of Xenopus egg extracts to study mitotic spindle assembly and function in vitro. Methods Cell Biol. 61, 385–412 (1999).

    Article  CAS  Google Scholar 

  36. Hinchcliffe, E. & Sluder, G. Use of Xenopus egg extracts for the study of centrosome reproduction in vitro. Methods Cell Biol. 67, 275–293 (2001).

    Google Scholar 

  37. Mendez, R., Barnard, D. & Richter, J.D. Differential mRNA translation and meiotic progression require CDK1-mediated CPEB destruction. EMBO J. 21, 1833–1844 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Barnard for technical advice and generously supplying some reagents and B. Neel for making us aware of the affinity chromatography method using thiophosphorylated peptides. This work was supported by grants from the US National Institutes of Health. Core support from the Diabetes and Endocrine Research Center Program Project is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

Q.C. performed all the experiments, J.H.K. generated some of the mutant Maskin proteins, Q.C. and J.D.R. designed the experiments and analyzed the data and J.D.R. wrote the paper.

Corresponding author

Correspondence to Joel D Richter.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, Q., Kim, J. & Richter, J. CDK1 and calcineurin regulate Maskin association with eIF4E and translational control of cell cycle progression. Nat Struct Mol Biol 13, 1128–1134 (2006). https://doi.org/10.1038/nsmb1169

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1169

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing