Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural and redox plasticity in the heterodimeric periplasmic nitrate reductase

Abstract

The structure of the respiratory nitrate reductase (NapAB) from Rhodobacter sphaeroides, the periplasmic heterodimeric enzyme responsible for the first step in the denitrification process, has been determined at a resolution of 3.2 Å. The di-heme electron transfer small subunit NapB binds to the large subunit with heme II in close proximity to the [4Fe-4S] cluster of NapA. A total of 57 residues at the N- and C-terminal extremities of NapB adopt an extended conformation, embracing the NapA subunit and largely contributing to the total area of 5,900 Å2 buried in the complex. Complex formation was studied further by measuring the variation of the redox potentials of all the cofactors upon binding. The marked effects observed are interpreted in light of the three-dimensional structure and depict a plasticity that contributes to an efficient electron transfer in the complex from the heme I of NapB to the molybdenum catalytic site of NapA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stereo views of the overall fold of the NapAB complex.
Figure 2: Comparisons of NapAB complex with the structures of the uncomplexed subunits.
Figure 3: Details of the intersubunit interface between NapA and NapB.
Figure 4: Kinetics of nitrate reduction and estimation of the binding affinity between NapA and NapB.
Figure 5: Midpoint redox potentials of the cofactors in both the free (red, NapB; green, NapA) and bound subunits (black) measured by optical spectroscopy and EPR titration as a function of the distances between the cofactors.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Blasco, F. et al. The coordination and function of the redox centres of the membrane-bound nitrate reductases. Cell. Mol. Life Sci. 58, 179–193 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Richardson, D.J., Berks, B.C., Russell, D.A., Spiro, S. & Taylor, C.J. Functional, biochemical and genetic diversity of prokaryotic nitrate reductases. Cell. Mol. Life Sci. 58, 165–178 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Sabaty, M., Schwintner, C., Cahors, S., Richaud, P. & Verméglio, A. Nitrite and nitrous oxide reductase regulation by nitrogen oxides in Rhodobacter sphaeroides f. sp. denitrificans IL106. J. Bacteriol. 181, 6028–6032 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Hille, R. Molybdenum and tungsten in biology. Trends Biochem. Sci. 27, 360–367 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Richardson, D.J. et al. The diversity of redox proteins involved in bacterial heterotrophic nitrification and aerobic denitrification. Biochem. Soc. Trans. 26, 401–408 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Anderson, G.L., Williams, J. & Hille, R. The purification and characterization of arsenite oxidase from Alcaligenes faecalis, a molybdenum-containing hydroxylase. J. Biol. Chem. 267, 23674–23682 (1992).

    CAS  PubMed  Google Scholar 

  7. Cartron, M.L., Roldan, M.D., Ferguson, S.J., Berks, B.C. & Richardson, D.J. Identification of two domains and distal histidine ligands to the four haems in the bacterial c-type cytochrome NapC; the prototype connector between quinol/quinone and periplasmic oxido-reductases. Biochem. J. 368, 425–432 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brigé, A., Leys, D., Meyer, T.E., Cusanovich, M.A. & Van Beeumen, J.J. The 1.25 Å resolution structure of the diheme NapB subunit of soluble nitrate reductase reveals a novel cytochrome c fold with a stacked heme arrangement. Biochemistry 41, 4827–4836 (2002).

    Article  PubMed  Google Scholar 

  9. Dias, J.M. et al. Crystal structure of the first dissimilatory nitrate reductase at 1.9 Å solved by MAD methods. Struct. Fold. Des. 7, 65–79 (1999).

    Article  CAS  Google Scholar 

  10. Sargent, F., Berks, B.C. & Palmer T. Assembly of membrane-bound respiratory complexes by the Tat protein-transport system. Arch. Microbiol. 178, 77–84 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Bennett, B., Berks, B.C., Ferguson, S.J., Thomson, A.J. & Richardson, D.J. Mo(V) EPR signals from the periplasmic nitrate reductase of Thiosphaera pantotropha. Eur. J. Biochem. 226, 789–798 (1994).

    Article  CAS  PubMed  Google Scholar 

  12. Bursakov, S.A. et al. Isolation and preliminary characterization of a soluble nitrate reductase from the sulfate-reducing organism Desulfovibrio desulfuricans ATCC 27774. Anaerobe 1, 55–60 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Lo Conte, L., Chothia, C. & Janin, J. The atomic structure of protein–protein recognition sites. J. Mol. Biol. 285, 2177–2198 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Lange, C. & Hunte, C. Crystal structure of the yeast cytochrome bc1 complex with its bound substrate cytochrome c. Proc. Natl. Acad. Sci. USA 99, 2800–2805 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Axelrod, H.L. et al. X-ray structure determination of the cytochrome c2: reaction center electron transfer complex from Rhodobacter sphaeroides. J. Mol. Biol. 319, 501–515 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Page, C.C., Moser, C.C., Chen, X. & Dutton, P.L. Natural engineering principles of electron tunnelling in biological oxidation-reduction. Nature 402, 47–52 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Pelletier, H. & Kraut, J. Crystal structure of a complex between electron transfer partners, cytochrome c peroxidase and cytochrome c. Science 258, 1748–1755 (1992).

    Article  CAS  PubMed  Google Scholar 

  18. Bamford, V.A. et al. Structural basis for the oxidation of thiosulfate by a sulfur cycle enzyme. EMBO J. 21, 5599–5610 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Morelli, X. et al. Structural model of the Fe-hydrogenase/cytochrome c553 complex combining transverse relaxation-optimized spectroscopy experiments and soft docking calculations. J. Biol. Chem. 275, 23204–23210 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Morelli, X. et al. Heteronuclear NMR and soft docking: an experimental approach for a structural model of the cytochrome c553–ferredoxin complex. Biochemistry 39, 2530–2537 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Deisenhofer, J., Epp, O., Sinning, I. & Michel, H. Crystallographic refinement at 2.3 Å resolution and refined model of the photosynthetic reaction centre from Rhodopseudomonas viridis. J. Mol. Biol. 246, 429–457 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Dohse, B. et al. Electron transfer from the tetraheme cytochrome to the special pair in the Rhodopseudomonas viridis reaction center: effect of mutations of tyrosine L162. Biochemistry 34, 11335–11343 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Farchaus, J.W., Wachtveitl, J., Mathis, P. & Oesterhelt, D. Tyrosine 162 of the photosynthetic reaction center L-subunit plays a critical role in the cytochrome c2-mediated rereduction of the photooxidized bacteriochlorophyll dimer in Rhodobacter sphaeroides. 1. Site-directed mutagenesis and initial characterization. Biochemistry 32, 10885–10893 (1993).

    Article  CAS  PubMed  Google Scholar 

  24. Wachtveitl, J., Farchaus, J.W., Mathis, P. & Oesterhelt, D. Tyrosine 162 of the photosynthetic reaction center L-subunit plays a critical role in the cytochrome c2-mediated rereduction of the photooxidized bacteriochlorophyll dimer in Rhodobacter sphaeroides. 2. Quantitative kinetic analysis. Biochemistry 32, 10894–10904 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. Berks, B.C. et al. Purification and characterization of the periplasmic nitrate reductase from Thiosphaera pantotropha. Eur. J. Biochem. 220, 117–124 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Moura, I., Bursakov, S.A., Costa, C. & Moura, J.J. Nitrate and nitrite utilization in sulfate-reducing bacteria. Anaerobe 3, 279–290 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Potter, L.C., Millington, P., Griffiths, L., Thomas, G.H. & Cole, J.A. Competition between Escherichia coli strains expressing either a periplasmic or a membrane-bound nitrate reductase: does Nap confer a selective advantage during nitrate-limited growth? Biochem. J. 344, 77–84 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Reyes, F., Gavira, M., Castillo, F. & Moreno-Vivian, C. Periplasmic nitrate-reducing system of the phototrophic bacterium Rhodobacter sphaeroides DSM 158: transcriptional and mutational analysis of the napKEFDABC gene cluster. Biochem. J. 331, 897–904 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Buc, J. et al. Enzymatic and physiological properties of the tungsten-substituted molybdenum TMAO reductase from Escherichia coli. Mol. Microbiol. 32, 159–168 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Sabaty, M., Avazeri, C., Pignol, D. & Verméglio, A. Characterization of the reduction of selenate and tellurite by nitrate reductases. Appl. Environ. Microbiol. 67, 5122–5126 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pignol, D., Adriano, J.M., Fontecilla-Camps, J.C. & Sabaty, M. Crystallization and preliminary X-ray analysis of the periplasmic nitrate reductase (NapA–NapB complex) from Rhodobacter sphaeroides f. sp. denitrificans. Acta Crystallogr. D 57, 1900–1902 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Leslie, A.G.W. Autoindexing of rotation diffraction images and parameter refinement, in Proceedings of the CCP4 Study Weekend: 'Data Collection and Processing' (eds. Sawyer, L., Isaacs, N. & Bailey, S.) 44–51 (SERC, Daresbury Laboratory, Daresbury, UK, 1993).

    Google Scholar 

  33. Collaborative Computational Project, Number 4. The CCP4 Suite: Programs for Protein Crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  34. Matthews, B.W. Solvent content of protein crystals. J. Mol. Biol. 33, 491–497 (1968).

    Article  CAS  PubMed  Google Scholar 

  35. Navazza, J. AmoRe: an automated package for molecular replacement. Acta Crystallogr. A 50, 157–163 (1994).

    Article  Google Scholar 

  36. Brünger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  PubMed  Google Scholar 

  37. Roussel, A. & Cambillau, C. In Silicon Graphics Geometry Partners Directory (Silicon Graphics, Mountain View, California, USA, 1991).

    Google Scholar 

  38. Murshudov, G.N., Vagin, A.A., Lebedev, A., Wilson, K.S. & Dodson, E.J. Efficient anisotropic refinement of macromolecular structures using FFT. Acta Crystallogr. D 55, 247–255 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Joliot, P., Béal, D. & Frilley, B. Une nouvelle méthode spectrophotométrique destinée à l'étude des réactions photosynthétiques. J. Chim. Phys. 77, 209–216 (1980).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the European Synchrotron Radiation Facility and especially the staff of the BM30 and ID14 beamlines (Grenoble, France) for the provision of data collection and processing facilities, the staff of the Laboratoire de Cristallographie et de Cristallogenèse des Protéines of the Institut de Biologie Structurale for encouragement, the Progamme de Toxicologie Nucléaire of the Comissariat à l'Energie atomique for financial support, and J. Lavergne and A. Verméglio for discussions and reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pascal Arnoux or David Pignol.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arnoux, P., Sabaty, M., Alric, J. et al. Structural and redox plasticity in the heterodimeric periplasmic nitrate reductase. Nat Struct Mol Biol 10, 928–934 (2003). https://doi.org/10.1038/nsb994

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb994

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing