Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure of a human mitochondrial deoxyribonucleotidase

Abstract

5′ nucleotidases are ubiquitous enzymes that dephosphorylate nucleoside monophosphates and participate in the regulation of nucleotide pools. The mitochondrial 5′-(3′) deoxyribonucleotidase (dNT-2) specifically dephosphorylates dUMP and dTMP, thereby protecting mitochondrial DNA replication from excess dTTP. We have solved the structure of dNT-2, the first of a mammalian 5′ nucleotidase. The structure reveals a relationship to the HAD family, members of which use an aspartyl nucleophile as their common catalytic strategy, with a phosphoserine phosphatase as the most similar neighbor. A structure-based sequence alignment of dNT-2 with other 5′ nucleotidases also suggests a common origin for these enzymes. Here we study the structures of dNT-2 in complex with bound phosphate and beryllium trifluoride plus thymidine as model for a phosphoenzyme–product complex. Based on these structures, determinants for substrate specificity recognition and the catalytic action of dNT-2 are outlined.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure and sequence alignment of the dNT-2.
Figure 2: Comparison of the dNT-2 structure with PSP (PDB entry 1F5S).
Figure 3: Detailed view of the active site of dNT-2.
Figure 4: Structure of dNT-2 in complex with thymidine and BeF3.
Figure 5: A proposal for a general catalytic mechanism for the soluble nucleotidases.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Reichard, P. Interactions between deoxyribonucleotide and DNA synthesis. Annu. Rev. Biochem. 57, 349–374 (1988).

    Article  CAS  Google Scholar 

  2. Johansson, M. & Karlsson, A. Cloning and expression of human deoxyguanosine kinase cDNA. Proc. Natl. Acad. Sci. USA 93, 7258–7262 (1996).

    Article  CAS  Google Scholar 

  3. Johansson, M. & Karlsson, A. Cloning of the cDNA and chromosome localization of the gene for human thymidine kinase 2. J. Biol. Chem. 272, 8454–8458 (1997).

    Article  CAS  Google Scholar 

  4. Mandel, H. et al. The deoxyguanosine kinase gene is mutated in individuals with depleted hepatocerebral mitochondrial DNA. Nature Genet. 29, 337–331 (2001).

    Article  CAS  Google Scholar 

  5. Saada, A. et al. Mutant mitochondrial thymidine kinase in mitochondrial DNA depletion myopathy. Nature Genet. 29, 342–344 (2001).

    Article  CAS  Google Scholar 

  6. Arpaia, E. et al. Mitochondrial basis for immune deficiency. Evidence from purine nucleoside phosphorylase-deficient mice. J. Exp. Med. 191, 2197–2208 (2000).

    Article  CAS  Google Scholar 

  7. Nishino, I., Spinazzola, A. & Hirano, M. Thymidine phosphorylase gene mutations in MNGIE, a human mitochondrial disorder. Science 283, 689–692 (1999).

    Article  CAS  Google Scholar 

  8. Rampazzo, C. et al. A deoxyribonucleotidase in mitochondria: involvement in regulation of dNTP pools and possible link to genetic disease. Proc. Natl. Acad. Sci. USA 97, 8239–8244 (2000).

    Article  CAS  Google Scholar 

  9. Rampazzo, C. et al. Mammalian 5′(3′)-deoxyribonucleotidase, cDNA cloning, and overexpression of the enzyme in Escherichia coli and mammalian cells. J. Biol. Chem. 275, 5409–5415 (2000).

    Article  CAS  Google Scholar 

  10. Gazziola, C. et al. Cytosolic high Km 5′-nucleotidase and 5′(3′)-deoxyribonucleotidase in substrate cycles involved in nucleotide metabolism. J. Biol. Chem. 276, 6185–6190 (2001).

    Article  CAS  Google Scholar 

  11. Lewis, W. & Dalakas, M.C. Mitochondrial toxicity of antiviral drugs. Nature Med. 1, 417–422 (1995).

    Article  CAS  Google Scholar 

  12. Resta, R., Yamashita, Y. & Thompson, L.F. Ecto-enzyme and signaling functions of lymphocyte CD73. Immunol. Rev. 161, 95–109 (1998).

    Article  CAS  Google Scholar 

  13. Itoh, R. IMP-GMP 5′-nucleotidase. Comp. Biochem. Physiol. B 105, 13–19 (1993).

    Article  CAS  Google Scholar 

  14. Hunsucker, S.A., Spychala, J. & Mitchell, B.S. Human cytosolic 5′-nucleotidase I: characterization and role in nucleoside analog resistance. J. Biol. Chem. 276, 10498–10504 (2001).

    Article  CAS  Google Scholar 

  15. Sala-Newby, G.B. & Newby, A.C. Cloning of a mouse cytosolic 5′-nucleotidase-I identifies a new gene related to human autoimmune infertility-related protein. Biochim. Biophys. Acta. 1521, 12–18 (2001).

    Article  CAS  Google Scholar 

  16. Paglia, D.E. et al. Pyrimidine nucleotidase deficiency with active dephosphorylation of dTMP: evidence for existence of thymidine nucleotidase in human erythrocytes. Blood 62, 1147–1149 (1983).

    CAS  PubMed  Google Scholar 

  17. Knofel, T. & Strater, N. X-ray structure of the Escherichia coli periplasmic 5′-nucleotidase containing a dimetal catalytic site. Nature Struct. Biol. 6, 448–453 (1999).

    Article  CAS  Google Scholar 

  18. Barford, D., Das, A.K. & Egloff M.P. The structure and mechanism of protein phosphatases: insights into catalysis and regulation. Annu. Rev. Biophys. Biomol. Struct. 27, 133–164 (1998).

    Article  CAS  Google Scholar 

  19. Amici, A. et al. Pyrimidine nucleotidases from human erythrocyte possess phosphotransferase activities specific for pyrimidine nucleotides. FEBS Lett. 419, 263–267 (1997).

    Article  CAS  Google Scholar 

  20. Amici, A. et al. Pyrimidine nucleotidases/phosphotransferases from human erythrocyte. Nucleosides Nucleotides 18, 853–855 (1999).

    Article  CAS  Google Scholar 

  21. Allegrini, S. et al. Bovine cytosolic 5′-nucleotidase acts through the formation of an aspartate 52-phosphoenzyme intermediate. J. Biol. Chem. 276, 33526–33532 (2001).

    Article  CAS  Google Scholar 

  22. Wang, W. et al. Crystal structure of phosphoserine phosphatase from Methanococcus jannaschii, a hyperthermophile, at 1.8 Å resolution. Structure (Camb) 9, 65–71 (2001).

    Article  CAS  Google Scholar 

  23. Collet, J.F. et al. A new class of phosphotransferases phosphorylated on an aspartate residue in an amino-terminal DXDX(T/V) motif. J. Biol. Chem. 273, 14107–14112 (1998).

    Article  CAS  Google Scholar 

  24. Hendrickson, W.A. Phase determination from multiwavelength anomalous diffraction measurements. Methods Enzymol. 276, 494–523 (1997).

    Article  CAS  Google Scholar 

  25. Holm, L. & Sander, C. Searching protein structure databases has come of age. Proteins 19, 165–173 (1994).

    Article  CAS  Google Scholar 

  26. Ridder, I.S. et al. Three-dimensional structure of L-2-haloacid dehalogenase from Xanthobacter autotrophicus GJ10 complexed with the substrate-analogue formate. J. Biol. Chem. 272, 33015–33022 (1997).

    Article  CAS  Google Scholar 

  27. Morais, M.C. et al. The crystal structure of Bacillus cereus phosphonoacetaldehyde hydrolase: insight into catalysis of phosphorus bond cleavage and catalytic diversification within the HAD enzyme superfamily. Biochemistry, 39, 10385–10396 (2000).

    Article  CAS  Google Scholar 

  28. Lee, S.Y. et al. Crystal structure of activated CheY. Comparison with other activated receiver domains. J. Biol. Chem. 276, 16425–16431 (2001).

    Article  CAS  Google Scholar 

  29. Cho, H. et al. BeF3(-) acts as a phosphate analog in proteins phosphorylated on aspartate: structure of a BeF3(-) complex with phosphoserine phosphatase. Proc. Natl. Acad. Sci. USA 98, 8525–8230 (2001).

    Article  CAS  Google Scholar 

  30. Toyoshima, C. et al. Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 Å resolution. Nature 405, 647–655 (2000).

    Article  CAS  Google Scholar 

  31. Mourey, L. et al. Crystal structure of the CheA histidine phosphotransfer domain that mediates response regulator phosphorylation in bacterial chemotaxis. J. Biol. Chem. 276, 31074–31082 (2001).

    Article  CAS  Google Scholar 

  32. Selengut, J.D. MDP-1 is a new and distinct member of the haloacid dehalogenase family of aspartate-dependent phosphohydrolases. Biochemistry 40, 12704–12711 (2001).

    Article  CAS  Google Scholar 

  33. Regni, C., Tipton, P.A. & Beamer, L.J. Crystal structure of PMM/PGM: an enzyme in the biosynthetic pathway of P. aeruginosa virulence factors. Structure (Camb) 10, 269–279 (2002).

    Article  CAS  Google Scholar 

  34. Lee, S.Y. et al. Crystal structure of an activated response regulator bound to its target. Nature Struct. Biol. 8, 52–56 (2001).

    Article  CAS  Google Scholar 

  35. Otwinowski, Z. & Minor, W. in Data collection and Processing (eds Sawyer, L., Isaacs, N.& Bailey, S.) 556–562 (SERC, Warrington, UK; 1991).

    Google Scholar 

  36. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  37. Terwilliger T.C. & Berendzen J. Automated MAD and MIR structure solution Acta. Crystallogr. D 55, 849–861 (1999).

    Article  CAS  Google Scholar 

  38. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  39. Cowtan, K. Joint CCP4 and ESF-EACBM Newsletter on Protein Crystallography. 31, 34–38 (1994).

  40. Abrahams, J.P. Methods used in the structure determination of bovine mitochondrial ATPase. Acta Crystallogr. D 52, 30–42 (1996).

    Article  CAS  Google Scholar 

  41. Lamzin, V.S. & Wilson, K.S. Automated refinement of protein models. Acta Crystallogr. D 49, 129–147 (1993).

    Article  CAS  Google Scholar 

  42. Brünger, A.T. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta. Crystallogr. D 54, 905–921 (1998).

    Article  Google Scholar 

  43. Barton, G.J. ALSCRIPT: a tool to format multiple sequence alignments. Protein Eng. 6, 37–40 (1993).

    Article  CAS  Google Scholar 

  44. Kraulis, P. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  45. Esnouf, R.M. An extensively modified version of MolScript that includes greatly enhanced coloring capabilities. J. Mol. Graph. 15, 132–134 (1997).

    Article  CAS  Google Scholar 

  46. Wallace, A.C., Laskowski, R.A. & Thornton, J.M. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng. 8, 127–134 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank in particular M. Bennet and X.-D. Su for advice on data collection and phasing. We also thank people at the Max Lab, Y. Cerenius for technical assistance, the staff at ESRF for technical assistance and G. Leonard for help with preliminary MAD data processing. We are grateful to K.-M. Larsson, M. Högbom and P. Stenmark for help with data collection. This work was supported by grants from Theleton Italia (V.B.), AIRC Associazione Italiana per la Ricerca sul Cancro (V.B.), the Swedish Research Council (P.N.), the Swedish Cancer Society (P.N.) and from the European community.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pär Nordlund.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rinaldo-Matthis, A., Rampazzo, C., Reichard, P. et al. Crystal structure of a human mitochondrial deoxyribonucleotidase. Nat Struct Mol Biol 9, 779–787 (2002). https://doi.org/10.1038/nsb846

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb846

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing