Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

One-step evolution of a dimer from a monomeric protein

Abstract

Deletion of six amino acids in a surface loop transforms staphylococcal nuclease from a monomeric protein into a very stable dimer (Kd<1×10−8M). A 2 Å X-ray crystal structure of the dimer (R=0.176) shows that the carboxy-terminal α-helix has been stripped from its normal position in one monomer and is now incorporated into the equivalent position on the adjoining monomer. This swapping creates an association interface of 2900 Å2. A second, smaller interface of 460 Å2 is also formed. The spontaneous exchange or swapping of secondary structural elements provides a simple pathway for the formation of large, stable protein/protein interfaces and may play an important role in the evolution of oligomeric proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Alexandrescu, A.T. & Shortle, D. Backbone dynamics of a highly disordered 131 residue fragment of staphylococcal nuclease. J. molec. Biol. 242, 527–546 (1994).

    Article  CAS  Google Scholar 

  2. Kay, L.E., Torchia, D.A. & Bax, A. Backbone dynamics of proteins as studied by 15N inverse detected heteronuclear NMR spectroscopy: application to staphylococcal nuclease. Biochemistry 28, 8972–8979 (1989).

    Article  CAS  Google Scholar 

  3. Lee, B.K. & Richards, F.M. The interpretation of protein structures: estimation of static accessibility. J. molec. Biol. 55, 379–400 (1971).

    Article  CAS  Google Scholar 

  4. Janin, J., Miller, S. & Chothia, C., Surface, subunit interfaces and interior of oligomeric proteins. J. molec. Biol. 204, 155–164 (1988).

    Article  CAS  Google Scholar 

  5. Alexandrescu, A.T., Abeygunawardana, C. & Shortle, D. Structure and dynamics of a denatured 131-residue fragment of staphylococcal nuclease: A heteronuclear NMR study. Biochemistry 33, 1063–1072 (1994).

    Article  CAS  Google Scholar 

  6. Shortle, D. & Abeygunawardana, C. NMR Analysis of the residual structure in the denatured state of an unusual mutant of staphylococcal nuclease. Structure 1, 121–134 (1993).

    Article  CAS  Google Scholar 

  7. Bennett, M.J., Choe, S. & Eisenberg, D. Domain swapping: Entangling alliances between proteins. Proc. natn. Acad. Sci. U.S.A. 91, 3127–3131 (1994).

    Article  CAS  Google Scholar 

  8. D'Alessio, G. Oligomer evolution in action? Nature struct. Biology 2, 11–13 (1995).

    Article  CAS  Google Scholar 

  9. The evolution of oligomerization. Nature struct. Biol. 1, 411–412 (1994).

  10. Mazzarella, L. et al. Bovine seminal ribonuclease structure at 1.9 angstroms resolution. Acta Crystallogr. D49, 389–402 (1993).

    CAS  Google Scholar 

  11. Green, S.M., Meeker, A.K. & Shortle, D. Contributions of the polar, uncharged amino acids to the stability of staphylococcal nuclease: evidence for mutational effects on the free energy of the denatured state. Biochemistry 31, 5717–5728 (1992).

    Article  CAS  Google Scholar 

  12. Brooks, I., Watts, D.G., Soneson, K.K. & Hensley, P. Determining confidence intervals for parameters derived from analysis of equilibrium ultracentrifugation data. Meth. Enzym. 240, 459–477 (1994).

    Article  CAS  Google Scholar 

  13. Navaza, J. AMORE: an automated package for molecular replacement. Acta. Cryst. A50, 157–163 (1994).

    Article  CAS  Google Scholar 

  14. N. 4. Collaborative Computational Project: the CCP4 suite: Programs for protein crystallography. Acta Crystallogr. D50, 760–763 (1994).

  15. Sack, J.S. CHAIN - crystallographic modeling program. J. molec. Graphics 6, 224–225 (1988).

    Article  Google Scholar 

  16. Sack, J.S. CHAIN Ver. 5.4. (Baylor College of Medicine, Houston, Texas; 1993).

    Google Scholar 

  17. Hermans, J.J. & Ferro, D. Representation of a protein molecule as a tree and application to modular computer programs which calculate and modify atomic coordinates. Biopolymers 10, 1121–1138 (1971).

    Article  CAS  Google Scholar 

  18. Hermans, J.J. & McQueen, J.E. Computer manipulations of (macro)molecules with the method of local change. Acta Crystallogr. A30, 730–739 (1974).

    Article  CAS  Google Scholar 

  19. Brünger, A.T., Kuriyan, J. & Karplus, M. Crystallographic R factor refinement by molecular dynamics. Science 235, 458–460 (1987).

    Article  Google Scholar 

  20. Brünger, A.T. X-PLOR Ver. 3.1. (Yale University Press, New Haven, CT, 1992).

    Google Scholar 

  21. Hendrickson, W.A. & Konnert, J.H. in Computing in Crystallography (eds; R. Diamond, S. Ramaseshan, K. Venkatesan) 13.01–13.23. [Author: please check these page numbers] (India Academy of Sciences, Bangalore, India; 1980).

    Google Scholar 

  22. Hendrickson, W.A. Stereochemically restrained refinement of macromolecular structures. Meth. Enzym. 115, 252–270 (1985).

    Article  CAS  Google Scholar 

  23. Kraulis, P.J. MOLSCRIPT J. appl. Cryst. 24, 946–950 (1991).

    Article  Google Scholar 

  24. Loll, P.J. & Lattman, E.E. The crystal structure of the ternary complex of staphylococcal nuclease, Ca2+, and the inhibitor pdTp, refined at 1.65 Å. Proteins: Struct. Funct. Genet. 5, 183–201 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Green, S., Gittis, A., Meeker, A. et al. One-step evolution of a dimer from a monomeric protein. Nat Struct Mol Biol 2, 746–751 (1995). https://doi.org/10.1038/nsb0995-746

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0995-746

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing