Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The multisubunit active site of fumarase C from Escherichia coli

Abstract

The crystal structure of the tetrameric enzyme, fumarase C from Escherichia coli, has been determined to a resolution of 2.0 Å. A tungstate derivative used in the X-ray analysis is a competitive inhibitor and places the active site of fumarase in a region which includes atoms from three of the four subunits. The polypeptide conformation is similar to that of δ-crystallin and is comprised of three domains. The central domain, D2, is a unique five-helix bundle. The association of the D2 domains results in a tetramer which has a core of 20 α-helices. The other two domains, D1 and D3, cap the helical bundle on opposite ends giving both the single subunit and the tetramer a dumbbell-like appearance. Fumarase C has sequence homology to the eukaryotic fumarases, aspartase, arginosuccinate lyase, adenylosuccinate lyase and δ-crystallin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hill, R.L. & Teipel, J.W. Fumarase and Crotonase. The Enzymes 5, (ed. Boyer, P.) 539–571 (Academic Press, NY; 1917).

    Google Scholar 

  2. Wu, M. & Tzagoloff, A. Mitochondrial and cytoplasmic fumarase in Saccharomyces cerevisiae are encoded by a single nuclear gene(FUMI). J. biol. Chem. 262, 12275–12282 (1987).

    CAS  PubMed  Google Scholar 

  3. Suzuki, T., Sato, M., Yoshida, T. & Tuboi, S. Rat liver mitochondrial and cytosolic fumarases with identical amino acid sequences are encoded from a single gene. J. biol. Chem. 264, 2581–2586 (1989)

    CAS  PubMed  Google Scholar 

  4. Suzuki, T., Yoshida, T. & Tuboi, S. Evidence that rat liver mitochondrial and cytosolic fumarases are synthesized from one species of mRNA by alternative translational initiation at two in-phase AUG codons. Eur. J. Bioc. 207, 767–772 (1992).

    Article  CAS  Google Scholar 

  5. Barnes, S.J. & Weitzman, P.D.J. Organization of citric acid cycle enzymes into a multienzyme cluster. FEBS Lett. 201, 267–270 (1986).

    Article  CAS  Google Scholar 

  6. Beekmans, S., Van Driessche, E. & Kanarek, L. The visualization by affinity electrophoresis of a specific association between the consecutive citric acid cycle enzymes fumarase and malate dehydrogenase. Eur. J. Bioc. 183, 449–454 (1989).

    Article  Google Scholar 

  7. Guest, J.R., Miles, J.S., Roberts, R.E. & Woods, S.A. The fumarase genes of Escherichia coli: location of the fumB gene and discovery of a new gene fumC. J. Gen. Micro. 131, 2971–2984 (1985).

    CAS  Google Scholar 

  8. Woods, S.A., Schwartzbach, S.D. & Guest, J.R. Two biochemically distinct classes of fumarase in Escherichia coli. Biochem. biophys. Acta. 954, 14–26 (1988).

    CAS  PubMed  Google Scholar 

  9. Woods, S.A., Miles, J.S., Roberts, R.E., and Guest, J.R. Structural and functional relationships between fumarase and aspartase. Biochem. J. 237, 547–557 (1986).

    Article  CAS  Google Scholar 

  10. Greenberg, J.T., Monach, P., Chou, J.H., Josephy, P.D. & Demple, B. Positive control of a global antioxidant defense regulon activated by superoxide generating agents in Escherichia coli. Proc. natn. Acad. Sci. U.S.A. 87, 6181–6185 (1990).

    Article  CAS  Google Scholar 

  11. Wu, J. & Weiss, B. Two divergently transcribed genes soxR and soxS, control a superoxide response of Escherichia coli. J. Bact. 173, 2864–2871 (1991).

    Article  CAS  Google Scholar 

  12. Amábile-Cuevas, C. & Demple, B. Molecular characterization of the soxRS genes of Escherichia coli: two genes control a superoxide stress response. Nucl. Acids Res. 19, 4479–4484 (1991).

    Article  Google Scholar 

  13. Wu, J. & Weiss, B. Two stage induction of the soxRS(superoxide response) regulon of Escherichia coli. J. Bact. 174, 3915–3920 (1992).

    Article  CAS  Google Scholar 

  14. Tsaneva, I. & Weiss, B., soxR, a locus governing a superoxide response regulon in Escherichia coli K-12. J. Bact. 172, 4197–4205 (1990).

    Article  CAS  Google Scholar 

  15. Nunoshiba, T., Hidalgo, E., Amábile-Cuevas, C. & Demple, B. Two-stage control of an oxidative stress regulon: the Escherichia coli soxR protein triggers redox-inducible expression of the soxS regulatory protein. J. Bact. 174, 6054–6060 (1992).

    Article  CAS  Google Scholar 

  16. Hidalgo, E. & Demple, B. An iron-sulfur center essential for transcriptional activation by the redox-sensing soxR protein. EMBO J. 13, 138–146 (1994).

    Article  CAS  Google Scholar 

  17. Liochev, S. & Fridovich, I. Fumarase C the stable fumarase of Escherichia coli, is controlled by the soxRS regulon. Proc. natn. Acad. U.S.A. 89, 5892–5896 (1992).

    Article  CAS  Google Scholar 

  18. Liochev, S. & Fridovich, I. Modulation of the fumarases of Escherichia coliin response to oxidative stress. Arch. bioc. Biophys. 301, 379–384 (1993).

    Article  CAS  Google Scholar 

  19. Li, Z. & Demple, B., Soxs, an activator of superoxide stress genes in Escherichia coli. J. biol. Chem. 269, 18371–18377 (1994).

    CAS  PubMed  Google Scholar 

  20. Simpson, A. et al. The structure of avian eye lens δ5-crystallin reveals a new fold for a superfamily of oligomeric enzymes. Nature struct. Biol. 1,724–733 (1994).

    Article  CAS  Google Scholar 

  21. Blanchard, J.S. & Cleland, W.W. Use of isotope effects to deduce the chemical mechanism of fumarase. Biochemistry 19, 4506–4513 (1980).

    Article  CAS  Google Scholar 

  22. Greenhut, J., Umezawa, H. & Rudolph, F.B. Inhibition of fumarase by (S)-2,3-dicarboxyaziridine. J. biol. Chem. 260, 6684–6686 (1985).

    CAS  PubMed  Google Scholar 

  23. Porter, D.J.T. & Bright, H.J. 3-carbanionic substrate analogues bind very tightly to fumarase and aspartase. J. biol. Chem. 255, 4772–4780 (1980).

    CAS  Google Scholar 

  24. Miller, S., Lesk, A.M., Janin, J. & Chothia, C. The accessible surface area and stability of oligomeric proteins. Nature 328, 834–836 (1987).

    Article  CAS  Google Scholar 

  25. Beeckmans, S. & Kanarek, L. A new purification for fumarase based on affinity chromatography. Eur. J. Bioch. 78, 437–444 (1977).

    Article  CAS  Google Scholar 

  26. Sarbus, A.S., Schindler, J.F. & Viola, R.E. Mutagenic investigation of conserved functional amino acids in Escherichia coli L-aspartase. J. biochem. Chem. 269, 6313–6319 (1994).

    Google Scholar 

  27. Bourgeron, T. et al. Mutation of the fumarase gene in two siblings with progressive encephalopathy and fumarase deficiency. J. clin. Invest. 93,2514–2518 (1994).

    Article  CAS  Google Scholar 

  28. Casadaban, M.J. & Cohen, S.N. Analysis of gene control signals by DNA fusion and cloning in Escherichia coli. J. molec. Biol. 138, 179–207 (1980).

    Article  CAS  Google Scholar 

  29. Innis, M.A., Gelfand, D.H., Sninsky, J.J. & White, T.J. PCR Protocols: A Guide to Methods and Applications. (Academic Press, San Diego, California, USA; 1990).

    Google Scholar 

  30. Skerra, A., Pfitzinger, I. & Pluckthun, A. The functional expression of antibody Fv fragments in Escherichia coli: Improved vectors and a generally applicable purification technique. Bio/Technology 9, 273–278 (1991).

    CAS  Google Scholar 

  31. Weaver, T.M., Levitt, D.G. & Banaszak, L.J. Purification and crystallization of fumarase C from Escherichia coli. J. molec. Biol. 231, 141–144 (1993).

    Article  CAS  Google Scholar 

  32. Crowe, J. The QIAexpressionist. edition 2. QIAGEN, Inc. Chatsworth, CA 1992.

    Google Scholar 

  33. Howard, A.J. et al. The use of imaging proportional counter in macromolecular crystallography. J Appl. Crystallogr. 20, 383–387 (1987).

    Article  CAS  Google Scholar 

  34. Collaborative Computational Project, Number 4, The CCP4 suite: programs for protein crystallography. Acta crystallogr D50, 760–763 (1994).

  35. Terwilliger, T.C. & Kim, S. Generalized method of determining heavy-atom positions using the difference Patterson method. Acta Cryst. A43, 1–5 (1987).

    Article  CAS  Google Scholar 

  36. Otwinowski, Z. Maximum likelihood refinement of heavy atom parameters. in Isomorphous replacement and anomalous scattering: proceedings of the CPP4 Study Weekend, January 1991. (eds Wolf, W., Evans, PR. & Leslie, A.G.W.) (DL7SCI/R32,ISSN 014–5677; 1991).

    Google Scholar 

  37. Brünger, A.T., Kuriyan, J. & Karplus, M., R-factor refinement by molecular dynamics. Science 235, 458–460 (1987).

    Article  Google Scholar 

  38. Cowtan, K. Joint CCP4 and ESF-EACBM newsletter on protein crystallography. 31, 34–38 (1994).

  39. Levitt, D.G. & Banaszak, L.J. A new routine for thinning, editing, and fitting MIR maps using real space molecular dynamics. J. appl. Crystallogr. 26, 736–745 (1993).

    Article  CAS  Google Scholar 

  40. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta crystallogr. A47, 110–119 (1991).

    Article  CAS  Google Scholar 

  41. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK-A program to check the stereochemical quality of protein structures. J. appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  42. Kabsch, W. & Sander, C. Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577–2637 (1983).

    Article  CAS  Google Scholar 

  43. Barton, G.J. Alscript: A tool to format multiple sequence alignments. Prot. Engng. 6, 37–40 (1993).

    Article  CAS  Google Scholar 

  44. Ferrin, T.E., Huang, C.C., Jarvis, L.E. & Langridge, R. The MIDAS display system. J. molec. Graphics 6, 13–27 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weaver, T., Levitt, D., Donnelly, M. et al. The multisubunit active site of fumarase C from Escherichia coli. Nat Struct Mol Biol 2, 654–662 (1995). https://doi.org/10.1038/nsb0895-654

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0895-654

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing