Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nanoscale mapping and functional analysis of individual adhesins on living bacteria

A Corrigendum to this article was published on 01 August 2005

This article has been updated

Abstract

Although much progress has been made in the identification and characterization of adhesins borne by pathogenic bacteria, the molecular details underlying their interaction with host receptors remain largely unknown owing to the lack of appropriate probing techniques. Here we report a method, based on atomic force microscopy (AFM) with tips bearing biologically active molecules, for measuring the specific binding forces of individual adhesins and for mapping their distribution on the surface of living bacteria. First, we determined the adhesion forces between the heparin-binding haemagglutinin adhesin (HBHA) produced by Mycobacterium tuberculosis and heparin, used as a model sulphated glycoconjugate receptor. Both the adhesion frequency and adhesion force increased with contact time, indicating that the HBHA-heparin complex is formed via multiple intermolecular bridges. We then mapped the distribution of single HBHA molecules on the surface of living mycobacteria and found that the adhesin is not randomly distributed over the mycobacterial surface, but concentrated into nanodomains.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Strategy for measuring the HBHA-heparin binding force at the single-molecule level using AFM.
Figure 2: Measurement of the binding force of the HBHA-heparin complex.
Figure 3: Dynamics of the HBHA-heparin interaction.
Figure 4: Mapping single HBHA adhesins on living mycobacteria.
Figure 5: Distribution of HBHA on the surface of M. bovis BCG and M. bovis BCG ΔHBHA as probed using different tips and cell preparations.

Similar content being viewed by others

Change history

  • 22 June 2005

    The website listed in the article has been modified

Notes

  1. NOTE:The website listed in the article has been modified. The corrected citation should read: (F.D.M. and M.C. Vidal-Pessolani, unpublished data; http://genolist.pasteur.fr/Leproma/) The error has been corrected in the HTML version of the article, and this correction has been appended to the PDF version of the article.

References

  1. Menozzi, F.D. et al. Identification of a heparin-binding hemagglutinin present in mycobacteria. J. Exp. Med. 184, 993–1001 (1996).

    Article  CAS  Google Scholar 

  2. Pethe, K. et al. Characterization of the heparin-binding site of the mycobacterial heparin-binding hemagglutinin adhesin. J. Biol. Chem. 275, 14273–14280 (2000).

    Article  CAS  Google Scholar 

  3. Reddy, V.M. & Kumar, B. Interaction of Mycobacterium avium complex with human respiratory epithelial cells. J. Infect. Dis. 181, 1189–1193 (2000).

    Article  CAS  Google Scholar 

  4. Menozzi, F.D., Bischoff, R., Fort, E., Brennan, M.J. & Locht, C. Molecular characterization of the mycobacterial heparin-binding hemagglutinin, a mycobacterial adhesin. Proc. Natl. Acad. Sci. USA 95, 12625–12630 (1998).

    Article  CAS  Google Scholar 

  5. Pethe, K. et al. The heparin-binding haemagglutinin of M. tuberculosis is required for extrapulmonary dissemination. Nature 412, 190–194 (2001).

    Article  CAS  Google Scholar 

  6. Mueller-Ortiz, S.L. et al. Decreased infectivity despite unaltered C3 binding by a ΔhbhA mutant of Mycobacterium tuberculosis. Infect. Immun. 70, 6751–6760 (2002).

    Article  CAS  Google Scholar 

  7. Delogu, G. & Brennan, M.J. Functional domains in the mycobacterial hemagglutinin, HBHA. J. Bacteriol. 181, 7464–7469 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Binnig, G., Quate, C.F. & Gerber, C. Atomic force microscope. Phys. Rev. Lett. 56, 930–933 (1986).

    Article  CAS  Google Scholar 

  9. Engel, A. & Müller, D.J. Observing single biomolecules at work with the atomic force microscope. Nat. Struct. Biol. 7, 715–718 (2000).

    Article  CAS  Google Scholar 

  10. Hörber, J.K. & Miles, M.J. Scanning probe evolution in biology. Science 302, 1002–1005 (2003).

    Article  Google Scholar 

  11. Dufrêne, Y.F. Using nanotechniques to explore microbial surfaces. Nat. Rev. Microbiol. 2, 451–460 (2004).

    Article  Google Scholar 

  12. Lee, G.U., Chrisey, L.A. & Colton, R.J. Direct measurement of the forces between complementary strands of DNA. Science 266, 771–773 (1994).

    Article  CAS  Google Scholar 

  13. Hinterdorfer, P., Baumgartner, W., Gruber, H.J., Schilcher, K. & Schindler, H. Detection and localization of individual antibody-antigen recognition events by atomic force microscopy. Proc. Natl. Acad. Sci. USA 93, 3477–3481 (1996).

    Article  CAS  Google Scholar 

  14. Lower, S.K., Hochella, M.F. & Beveridge, T.J. Bacterial recognition of mineral surfaces: nanoscale interactions between Shewanella and α-FeOOH. Science 292, 1360–1363 (2001).

    Article  CAS  Google Scholar 

  15. Abu-Lail, N.I. & Camesano, T.A. Elasticity of Pseudomonas putida KT2442 surface polymers probed with single-molecule force microscopy. Langmuir 18, 4071–4081 (2002).

    Article  CAS  Google Scholar 

  16. Ludwig, M., Dettmann, W. & Gaub, H.E. Atomic force microscope imaging contrast based on molecular recognition. Biophys. J. 72, 445–448 (1997).

    Article  CAS  Google Scholar 

  17. Heinz, W.F. & Hoh, J.H. Spatially resolved force spectroscopy of biological surfaces using the atomic force microscope. Trends Biotechnol. 17, 143–150 (1999).

    Article  CAS  Google Scholar 

  18. Grandbois, M., Dettmann, W., Benoit, M. & Gaub, H.E. Affinity imaging of red blood cells using an atomic force microscope. J. Histochem. Cytochem. 48, 719–724 (2000).

    Article  CAS  Google Scholar 

  19. Lehenkari, P.P., Charras, G.T., Nykänen, A. & Horton, M.A. Adapting atomic force microscopy for cell biology. Ultramicroscopy 82, 289–295 (2000).

    Article  CAS  Google Scholar 

  20. Almqvist, N. et al. Elasticity and adhesion force mapping reveals real-time clustering of growth factor receptors and associated changes in local cellular rheological properties. Biophys. J. 86, 1753–1762 (2004).

    Article  CAS  Google Scholar 

  21. Luk, Y-Y. et al. Using liquid crystals to amplify protein-receptor interactions: design of surfaces with nanometer-scale topography that present histidine-tagged protein receptors. Langmuir 19, 1671–1680 (2003).

    Article  CAS  Google Scholar 

  22. Rief, M., Oesterhelt, F., Heymann, B. & Gaub, H.E. Single molecule force spectroscopy on polysaccharides by atomic force microscopy. Science 275, 1295–1297 (1997).

    Article  CAS  Google Scholar 

  23. Merkel, R., Nassoy, P., Leung, A., Ritchie, K. & Evans, E. Energy landscapes of receptor-ligand bonds explored with dynamic force spectroscopy. Nature 397, 50–53 (1999).

    Article  CAS  Google Scholar 

  24. Baumgartner, W. et al. Cadherin interaction probed by atomic force microscopy. Proc. Natl. Acad. Sci. USA 97, 4005–4010 (2000).

    Article  CAS  Google Scholar 

  25. Auletta, T. β-Cyclodextrin host-guest complexes probed under thermodynamic equilibrium: thermodynamics and AFM force spectroscopy. J. Am. Chem. Soc. 126, 1577–1584 (2004).

    Article  CAS  Google Scholar 

  26. Devadoss, P., Klegerman, M.E. & Groves, M.J. Surface morphology of Mycobacterium bovis BCG: relation to mechanisms of cellular aggregation. Microbios. 65, 111–125 (1991).

    CAS  PubMed  Google Scholar 

  27. Florin, E.L., Moy, V.T. & Gaub, H.E. Adhesion forces between individual ligand-receptor pairs. Science 264, 415–417 (1994).

    Article  CAS  Google Scholar 

  28. Margalit, H., Fischer, N. & Ben-Sasson, S.A. Comparative analysis of structurally defined heparin binding sequences reveals a distinct spatial distribution of basic residues. J. Biol. Chem. 268, 19228–19231 (1993).

    CAS  PubMed  Google Scholar 

  29. Bernfield, M. et al. Functions of cell surface heparan sulfate proteoglycans. Annu. Rev. Biochem. 68, 729–777 (1999).

    Article  CAS  Google Scholar 

  30. Tkachenko, E. & Simons, M. Clustering induces redistribution of syndecan-4 core protein into raft membrane domains. J. Biol. Chem. 277, 19946–19951 (2002).

    Article  CAS  Google Scholar 

  31. Ofek, I., Hasty, D.L. & Sharon, N. Anti-adhesion therapy of bacterial diseases: prospects and problems. FEMS Immunol. Med. Microbiol. 38, 181–191 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Foundation for Scientific Research (FNRS), the Université Catholique de Louvain (Fonds Spéciaux de Recherche), the Federal Office for Scientific, Technical and Cultural Affairs (Interuniversity Poles of Attraction Programme), the Research Department of the Communauté Française de Belgique (Concerted Research Action), the INSERM, the Institut Pasteur de Lille and the Région Nord-Pas de Calais. N.L.A. and B.H.C. acknowledge support from the US National Science Foundation through the MRSEC program. We thank G. Delogù for the gift of E. coli BL21(pGD51), E. Pradel and M. Simonet for critical reading of the manuscript, L. Piraux for the use of the thermal evaporator, E. Ferain for the use of the scanning electron microscope and P. Hinterdorfer for stimulating discussions. Y.F.D. is a Research Associate of the FNRS.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Franco D Menozzi or Yves F Dufrêne.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dupres, V., Menozzi, F., Locht, C. et al. Nanoscale mapping and functional analysis of individual adhesins on living bacteria. Nat Methods 2, 515–520 (2005). https://doi.org/10.1038/nmeth769

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth769

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing