Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Movable high-Q nanoresonators realized by semiconductor nanowires on a Si photonic crystal platform

Abstract

Subwavelength semiconductor nanowires have recently attracted interest for photonic applications because they possess various unique optical properties and offer great potential for miniaturizing devices. However, realizing tight light confinement or efficient coupling with photonic circuits is not straightforward and remains a challenge. Here we show that a high-Q nanocavity can be created by placing a single III–V semiconductor nanowire with a diameter of under 100 nm in a grooved waveguide in a Si photonic crystal, by means of nanoprobe manipulation. We observe very fast spontaneous emission (91 ps) from nanowires accelerated by the strong Purcell enhancement in nanocavities, which proves that very strong light confinement can be achieved. Furthermore, this system enables us to move the nanocavity anywhere along the waveguide. This configuration provides a significant degree of flexibility in integrated photonics and permits the addition and displacement of various functionalities of III–V nanocavity devices in Si photonic circuits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A movable hybrid cavity and emitter in a photonic crystal and NWs.
Figure 2: Manipulation of a single NW and PL characterization.
Figure 3: Observation of a movable cavity at three different positions.
Figure 4: Emission rate enhancement for different Qexp/V values.

Similar content being viewed by others

References

  1. Wagner, R. S. & Ellis, W. C. Vapor–liquid–solid mechanism of single crystal growth. Appl. Phys. Lett. 4, 89–90 (1964).

    Article  CAS  Google Scholar 

  2. Lauhon, L., Gudiksen, M., Wang, C. & Lieber, C. Epitaxial core–shell and core–multishell nanowire heterostructures. Nature 420, 57–61 (2002).

    Article  CAS  Google Scholar 

  3. Gudiksen, M., Lauhon, L., Wang, J., Smith, D. & Lieber, C. Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 415, 617–620 (2002).

    Article  CAS  Google Scholar 

  4. Tateno, K., Zhang, G., Gotoh, H. & Sogawa, T. VLS growth of alternating InAsP/InP heterostructure nanowires for multiple-quantum-dot structures. Nano Lett. 12, 2888–2893 (2012).

    Article  CAS  Google Scholar 

  5. Heiss, M. et al. Self-assembled quantum dots in a nanowire system for quantum photonics. Nature Mater. 12, 439–444 (2013).

    Article  CAS  Google Scholar 

  6. Duan, X., Huang, Y., Cui, Y., Wang, J. & Lieber, C. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409, 66–69 (2001).

    Article  CAS  Google Scholar 

  7. Wang, J., Gudiksen, M., Duan, X., Cui, Y. & Lieber, C. Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Science 293, 1455–1457 (2001).

    Article  CAS  Google Scholar 

  8. Huang, M. et al. Room-temperature ultraviolet nanowire nanolasers. Science 292, 1897–1899 (2001).

    Article  CAS  Google Scholar 

  9. Duan, X., Huang, Y., Agarwal, R. & Lieber, C. Single-nanowire electrically driven lasers. Nature 421, 241–245 (2003).

    Article  CAS  Google Scholar 

  10. Oulton, R. F. et al. Plasmon lasers at deep subwavelength scale. Nature 461, 629–632 (2009).

    Article  CAS  Google Scholar 

  11. Lu, Y-J. et al. Plasmonic nanolaser using epitaxially grown silver film. Science 337, 450–453 (2012).

    Article  CAS  Google Scholar 

  12. Claudon, J. et al. A highly efficient single-photon source based on a quantum dot in a photonic nanowire. Nature Photon. 4, 174–177 (2010).

    Article  CAS  Google Scholar 

  13. Nakayama, Y. et al. Tunable nanowire nonlinear optical probe. Nature 447, 1098–1101 (2007).

    Article  CAS  Google Scholar 

  14. Yan, R., Gargas, D. & Yang, P. Nanowire photonics. Nature Photon. 3, 569–576 (2009).

    Article  CAS  Google Scholar 

  15. Oulton, R. F., Sorger, J. V., Genov, A. D., Pile, D. F. P. & Zhang, X. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nature Photon. 2, 496–500 (2008).

    Article  CAS  Google Scholar 

  16. Barrelet, C. J. et al. Hybrid single-nanowire photonic crystal and microresonator structures. Nano Lett. 6, 11–15 (2006).

    Article  CAS  Google Scholar 

  17. Notomi, M. Manipulating light with strongly modulated photonic crystals. Rep. Prog. Phys. 73, 096501 (2010).

    Article  Google Scholar 

  18. Notomi, M. & Taniyama, H. On-demand ultrahigh-Q cavity formation and photon pinning via dynamic waveguide tuning. Opt. Express 16, 18657–18666 (2008).

    Article  Google Scholar 

  19. Yokoo, A., Tanabe, T., Kuramochi, E. & Notomi, M. Ultrahigh-Q nanocavities written with a nanoprobe. Nano Lett. 11, 3634–3642 (2011).

    Article  CAS  Google Scholar 

  20. Birowosuto, M. D. et al. Design for ultrahigh-Q position-controlled nanocavities of single semiconductor nanowires in two-dimensional photonic crystals. J. Appl. Phys. 112, 113106 (2012).

    Article  Google Scholar 

  21. Chen, R. et al. Nanolasers grown on silicon. Nature Photon. 5, 170–175 (2011).

    Article  CAS  Google Scholar 

  22. Liang, D. & Bowers, J. E. Recent progress in lasers on silicon. Nature Photon. 4, 511–517 (2010).

    Article  CAS  Google Scholar 

  23. Park, H-G. et al. A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source. Nature Photon. 2, 622–626 (2008).

    Article  CAS  Google Scholar 

  24. Painter, O. et al. Two-dimensional photonic band-gap defect mode laser. Science 284, 1819–1821 (1999).

    Article  CAS  Google Scholar 

  25. Noda, S., Chutinan, A. & Imada, M. Trapping and emission of photons by a single defect in a photonic bandgap structure. Nature 407, 608–610 (2000).

    Article  CAS  Google Scholar 

  26. Topolancik, J., Ilic, B. & Vollmer, F. Experimental observation of strong photon localization in disordered photonic crystal waveguides. Phys. Rev. Lett. 99, 253901 (2007).

    Article  CAS  Google Scholar 

  27. Sapienza, L. et al. Cavity quantum electrodynamics with Anderson-localized modes. Science 327, 1352–1355 (2010).

    Article  CAS  Google Scholar 

  28. Gardin, S. et al. Microlasers based on effective index confined slow light modes in photonic crystal waveguides. Opt. Express 16, 6331–6339 (2008).

    Article  CAS  Google Scholar 

  29. Smith, C. L. et al. Reconfigurable microfluidic photonic crystal slab cavities. Opt. Express 16, 15887–15896 (2008).

    Article  CAS  Google Scholar 

  30. Seo, M-K. et al. Wavelength-scale photonic-crystal laser formed by electron-beam-induced nano-block deposition. Opt. Express 17, 6790–6798 (2009).

    Article  CAS  Google Scholar 

  31. Psaltis, D., Quake, S. R. & Yang, C. Developing optofluidic technology through the fusion of microfluidics and optics. Nature 442, 381–386 (2006).

    Article  CAS  Google Scholar 

  32. Junno, T., Deppert, K., Montelius, L. & Samuelson, L. Controlled manipulation of nanoparticles with an atomic force microscope. Appl. Phys. Lett. 66, 3627–3629 (1995).

    Article  CAS  Google Scholar 

  33. Wolters, J. et al. Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity. Lett. Appl. Phys. 97, 141108 (2010).

    Article  Google Scholar 

  34. Benson, O. Assembly of hybrid photonic architectures from nanophotonic constituents. Nature 480, 193–199 (2011).

    Article  CAS  Google Scholar 

  35. Sasakura, H. et al. Longitudinal and transverse exciton-spin relaxation in a single InAsP quantum dot embedded inside a standing InP nanowire using photoluminescence spectroscopy. Phys. Rev. B 85, 075324 (2012).

    Article  Google Scholar 

  36. Shields, A. J. Semiconductor quantum light sources. Nature Photon. 1, 215–223 (2007).

    Article  CAS  Google Scholar 

  37. Bleuse, J. et al. Inhibition, enhancement, and control of spontaneous emission in photonic nanowires. Phys. Rev. Lett. 106, 103601 (2011).

    Article  Google Scholar 

  38. Bulgarini, G. et al. Spontaneous emission control of single quantum dots in bottom-up nanowire waveguides. Appl. Phys. Lett. 100, 121106 (2012).

    Article  Google Scholar 

  39. Ford, G. & Weber, W. Electromagnetic interactions of molecules with metal surfaces. Phys. Rep. 113, 195–287 (1984).

    Article  CAS  Google Scholar 

  40. Ryu, H. Y. & Notomi, M. Enhancement of spontaneous emission from the resonant modes of a photonic crystal slab single-defect cavity. Opt. Lett. 28, 2390–2392 (2003).

    Article  CAS  Google Scholar 

  41. Englund, D. et al. Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal . Phys. Rev. Lett. 95, 013904 (2005).

    Article  Google Scholar 

  42. Badolato, A. et al. Deterministic coupling of single quantum dots to single nanocavity modes. Science 308, 1158–1161 (2005).

    Article  CAS  Google Scholar 

  43. Matsuo, S. et al. High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted . Nature Photon. 4, 648–654 (2010).

    Article  CAS  Google Scholar 

  44. Nozaki, K. et al. Ultralow-power all-optical RAM based on nanocavities . Nature Photon. 6, 248–252 (2012).

    Article  CAS  Google Scholar 

  45. Babinec, T. M. et al. A diamond nanowire single-photon source. Nature Nanotech. 5, 195–199 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge S. Fujiura and M. Ono for assistance with the NW manipulation and W.J. Munro for discussions.

Author information

Authors and Affiliations

Authors

Contributions

M.D.B., A.Y., G.Z. and M.N. conceived the idea and designed the experiments. M.D.B. performed the simulation, conducted the experiments and analysed the data. M.D.B. and M.N. wrote the manuscript. A.Y. manipulated the nanowires. K.T. conducted the NW growth. G.Z. and E.K. were involved in the fabrication processes. M.T. supported the experiments. H.T. supported the simulation. M.N. guided the project.

Corresponding author

Correspondence to Masaya Notomi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1671 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Birowosuto, M., Yokoo, A., Zhang, G. et al. Movable high-Q nanoresonators realized by semiconductor nanowires on a Si photonic crystal platform. Nature Mater 13, 279–285 (2014). https://doi.org/10.1038/nmat3873

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3873

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing