Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Wnt glycoproteins regulate the expression of FoxN1, the gene defective in nude mice

Abstract

T cell development and selection require the fully mature and diverse epithelial microenvironment of the thymus. Acquisition of these characteristics is dependent on expression of the forkhead (also known as winged-helix) transcription factor FoxN1, as a lack of functional FoxN1 results in aberrant epithelial morphogenesis and an inability to attract lymphoid precursors to the thymus primordium. However, the transcriptional control of Foxn1 expression has not been elucidated. Here we report that secreted Wnt glycoproteins, expressed by thymic epithelial cells and thymocytes, regulate epithelial Foxn1 expression in both autocrine and paracrine fashions. Wnt molecules therefore provide regulatory signals critical for thymic function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Wnt molecules are expressed in the lymphoid and stromal compartments of the thymus.
Figure 2: Thymocytes activate the Wnt signaling pathway and target the expression of Foxn1 in TECs.
Figure 3: FoxN1 transcription is directly regulated by the Wnt signaling pathway.
Figure 4: Wnt-mediated regulation of Foxn1 transcription in TECs is controlled via the canonical pathway.
Figure 5: Wnt-mediated signaling for Foxn1 up-regulation involves PI3K and Akt.
Figure 6: Wnt and FoxN1 expression in the pharyngeal region during early thymic development.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Anderson, G. & Jenkinson, E.J. Lymphostromal interactions in thymic development and function. Nature Rev. Immunol. 1, 31–40 (2001).

    Article  CAS  Google Scholar 

  2. Nehls, M. et al. Two genetically separable steps in the differentiation of thymic epithelium. Science 272, 886–889 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Frank, J. et al. Exposing the human nude phenotype. Nature 398, 473–474 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Itoi, M., Kawamoto, H., Katsura, Y. & Amagai, T. Two distinct steps of immigration of hematopoietic progenitors into the early thymus anlage. Int. Immunol. 13, 1203–1211 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Wodarz, A. & Nusse, R. Mechanisms of Wnt signaling in development. Annu. Rev. Cell. Dev. Biol. 14, 59–88 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Miller, J.R. The Wnts. Genome Biol. 3, 1–15 (2002).

    Google Scholar 

  7. Kitagawa, M. et al. An F-box protein, FWD1, mediates ubiquitin-dependent proteolysis of β-catenin. EMBO J. 18, 2401–2410 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Staal, F.J., Noort, M., Strous, G.J. & Clevers, H.C. Wnt signals are transmitted through N-terminally dephosphorylated β-catenin. EMBO Rep. 3, 63–68 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Guger, K.A. & Gumbiner, B.M. A mode of regulation of β-catenin signaling activity in Xenopus embryos independent of its levels. Dev. Biol. 223, 441–448 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Barker, N., Morin, P.J. & Clevers, H. The Yin-Yang of TCF/β-catenin signaling. Adv. Cancer Res. 77, 1–24 (2000).

    CAS  PubMed  Google Scholar 

  11. Amagai, T., Itoi, M. & Kondo, Y. Limited development capacity of the earliest embryonic murine thymus. Eur. J. Immunol. 25, 757–762 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Gill, J., Malin, M., Hollander, G.A. & Boyd, R. Generation of a complete thymic microenvironment by MTS24+ thymic epithelial cells. Nature Immunol. 3, 635–642 (2002).

    Article  CAS  Google Scholar 

  13. Kasai, M. et al. Difference in antigen presentation pathways between cortical and medullary TECs. Eur. J. Immunol. 26, 2101–2107 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Korinek, V. et al. Constitutive transcriptional activation by a β-catenin-Tcf complex in APC−/− colon carcinoma. Science 275, 1784–1787 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Dale, T.C. Signal transduction by the Wnt family of ligands. Biochem. J. 329, 209–223 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Finch, P.W. et al. Purification and molecular cloning of a secreted, Frizzled-related antagonist of Wnt action. Proc. Natl. Acad. Sci. USA 94, 6770–6775 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Leyns, L., Bouwmeester, T., Kim, S.H., Piccolo, S. & De Robertis, E.M. Frzb-1 is a secreted antagonist of Wnt signaling expressed in the Spemann organizer. Cell 88, 747–756 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jho, E.H. et al. Wnt/β-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol. Cell. Biol. 22, 1172–1183 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Howard, E.W., Newman, L.A., Oleksyn, D.W., Angerer, R.C. & Angerer, L.M. SpKrl: a direct target of β-catenin regulation required for endoderm differentiation in sea urchin embryos. Development 128, 365–375 (2001).

    CAS  PubMed  Google Scholar 

  20. Nelson, R.W. & Gumbiner, B.M. A cell-free assay system for β-catenin signaling that recapitulates direct inductive events in the early xenopus laevis embryo. J. Cell. Biol. 147, 367–374 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hedgepeth, C.M. et al. Activation of the Wnt signaling pathway: a molecular mechanism for lithium action. Dev. Biol. 185, 82–91 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Schorpp, M., Hofmann, M., Dear, T.N. & Boehm, T. Characterization of mouse and human nude genes. Immunogenetics 46, 509–515 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. van de Wetering, M., Oosterwegel, M., Dooijes, D. & Clevers, H. Identification and cloning of TCF-1, a T lymphocyte-specific transcription factor containing a sequence-specific HMG box. EMBO J. 10, 123–132 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Roose, J. & Clevers, H. TCF transcription factors: molecular switches in carcinogenesis. Biochim. Biophys. Acta 1424, M23–37 (1999).

    CAS  PubMed  Google Scholar 

  25. Cunliffe, V.T., Furley, A.J. & Keenan, D. Complete rescue of the nude mutant phenotype by a wild-type Foxn1 transgene. Mamm. Genome 13, 245–252 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Salic, A., Lee, E., Mayer, L. & Kirschner, M.W. Control of β-catenin stability: reconstitution of the cytoplasmic steps of the wnt pathway in Xenopus egg extracts. Mol. Cell 5, 523–532 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Sokol, S.Y. Analysis of Dishevelled signalling pathways during Xenopus development. Curr. Biol. 6, 1456–1467 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Kolligs, F.T., Hu, G., Dang, C.V. & Fearon, E.R. Neoplastic transformation of RK3E by mutant β-catenin requires deregulation of Tcf/Lef transcription but not activation of c-myc expression. Mol. Cell. Biol. 19, 5696–5706 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Burgering, B.M. & Coffer, P.J. Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nature 376, 599–602 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Fukumoto, S. et al. Akt participation in the Wnt signaling pathway through dishevelled. J. Biol. Chem. 276, 17479–17483 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Franke, T.F., Kaplan, D.R., Cantley, L.C. & Toker, A. Direct regulation of the Akt proto-oncogene product by phosphatidylinositol-3,4-bisphosphate. Science 275, 665–668 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Gordon, J., Bennett, A.R., Blackburn, C.C. & Manley, N.R. Gcm2 and Foxn1 mark early parathyroid- and thymus-specific domains in the developing third pharyngeal pouch. Mech. Dev. 103, 141–143 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. van de Wetering, M., de Lau, W. & Clevers, H. WNT signaling and lymphocyte development. Cell 109 (Suppl) 13–19 (2002).

    Article  Google Scholar 

  34. Tice, D.A. et al. Synergistic induction of tumor antigens by Wnt-1 signaling and retinoic acid revealed by gene expression profiling. J. Biol. Chem. 277, 14329–14335 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Kurooka, H. et al. Rescue of the hairless phenotype in nude mice by transgenic insertion of the wild-type Hfh11 genomic locus. Int. Immunol. 8, 961–966 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Cadigan, K.M. & Nusse, R. Wnt signaling: a common theme in animal development. Genes Dev. 11, 3286–3305 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Lind, E.F., Prockop, S.E., Porritt, H.E. & Petrie, H.T. Mapping precursor movement through the postnatal thymus reveals specific microenvironments supporting defined stages of early lymphoid development. J. Exp. Med. 194, 127–134 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mulroy, T., McMahon, J.A., Burakoff, S.J., McMahon, A.P. & Sen, J. Wnt-1 and Wnt-4 regulate thymic cellularity. Eur. J. Immunol. 32, 967–971 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. van Genderen, C. et al. Development of several organs that require inductive epithelial- mesenchymal interactions is impaired in LEF-1-deficient mice. Genes Dev. 8, 2691–2703 (1994).

    Article  CAS  PubMed  Google Scholar 

  40. Suniara, R.K., Jenkinson, E.J. & Owen, J.J. An essential role for thymic mesenchyme in early T cell development. J. Exp. Med. 191, 1051–1056 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fuchs, E., Merrill, B.J., Jamora, C. & DasGupta, R. At the roots of a never-ending cycle. Dev. Cell 1, 13–25 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Lee, D., Prowse, D.M. & Brissette, J.L. Association between mouse nude gene expression and the initiation of epithelial terminal differentiation. Dev. Biol. 208, 362–374 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Schlake, T., Schorpp, M., Maul-Pavicic, A., Malashenko, A.M. & Boehm, T. Forkhead/winged-helix transcription factor whn regulates hair keratin gene expression: molecular analysis of the nude skin phenotype. Dev. Dyn. 217, 368–376 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Anderson, K.L., Moore, N.C., McLoughlin, D.E., Jenkinson, E.J. & Owen, J.J. Studies on thymic epithelial cells in vitro. Dev. Comp. Immunol. 22, 367–377 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Heemskerk, M.H. et al. Inhibition of T cell and promotion of natural killer cell development by the dominant negative helix loop helix factor Id3. J. Exp. Med. 186, 1597–1602 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Morgenstern, J.P. & Land, H. Advanced mammalian gene transfer: high titre retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell line. Nucleic Acids Res. 18, 3587–3596 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kinsella, T.M. & Nolan, G.P. Episomal vectors rapidly and stably produce high-titer recombinant retrovirus. Hum. Gene. Ther. 7, 1405–1413 (1996).

    Article  CAS  PubMed  Google Scholar 

  48. Gray, D.H., Chidgey, A.P. & Boyd, R.L. Analysis of thymic stromal cell populations using flow cytometry. J. Immunol. Meth. 260, 15–28 (2002).

    Article  CAS  Google Scholar 

  49. Zuklys, S. et al. Normal thymic architecture and negative selection are associated with aire expression, the gene defective in the autoimmune- polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED). J. Immunol. 165, 1976–1983 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Peter and I. Grass for technical assistance; G. Anderson and J. Pongracz (Birmingham, UK) for experimental help and expertise; E. Palmer, S. Arber, P. Caroni and R. Zeller for helpful discussions; and T. Mizuochi (Kyoto, Japan), H. Spits (Amsterdam, the Netherlands), G. Nolan (Stanford, USA), J. Brissette (Boston, USA), R. Kemler (Freiburg, Germany), E. R. Fearon (Ann Arbor, USA) and F. J. Staal (Rotterdam, The Netherlands) for reagents. Supported by the Swiss National Science Foundation (GAH 31-55820.98).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg A. Holländer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balciunaite, G., Keller, M., Balciunaite, E. et al. Wnt glycoproteins regulate the expression of FoxN1, the gene defective in nude mice. Nat Immunol 3, 1102–1108 (2002). https://doi.org/10.1038/ni850

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni850

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing