Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Drug Insight: mechanisms of action and therapeutic applications for agonists of peroxisome proliferator-activated receptors

Abstract

Intensive preclinical investigations have delineated a role for peroxisome proliferator-activated receptors (PPARs) in energy metabolism and inflammation. PPARs are activated by natural lipophilic ligands such as fatty acids and their derivatives. Normalization of lipid and glucose metabolism is achieved via pharmacological modulation of PPAR activity. PPARs may also alter atherosclerosis progression through direct effects on the vascular wall. PPARs regulate genes involved in the recruitment of leukocytes to endothelial cells, in vascular inflammation, in macrophage lipid homeostasis, and in thrombosis. PPARs therefore modulate metabolic and inflammatory perturbations that predispose to cardiovascular diseases and type 2 diabetes. The hypolipidemic fibrates and the antidiabetic thiazolidinediones are drugs that act via PPARα and PPARγ, respectively, and are used in clinical practice. PPARβ/δ ligands are currently in clinical evaluation. The pleiotropic actions of PPARs and the fact that chemically diverse PPAR agonists may induce distinct pharmacological responses have led to the emergence of new concepts for drug design. A more precise understanding of the molecular pathways implicated in the response to chemically distinct PPAR agonists should provide new opportunities for targeted therapeutic applications in the management of the metabolic syndrome, type 2 diabetes, and cardiovascular diseases.

Key Points

  • Peroxisome proliferator-activated receptors (PPARs) are major regulators of energy homeostasis and inflammation control

  • PPARs are modulators of cardiovascular disease risk

  • PPARs are pharmacological targets for treatment of the metabolic syndrome, diabetes, and atherosclerosis

  • Greater knowledge of the functions of PPARs in health and disease has led to new concepts of drug design

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanisms of PPAR signaling.
Figure 2: PPARα in lipid and lipoprotein metabolism.
Figure 3: PPARγ improves insulin sensitivity by controlling the metabolic and the endocrine functions of adipose tissue.
Figure 4: Selective modulation of PPAR activity.
Figure 5: Scheme summarizing the pleiotropic actions of the three PPAR isotypes and the benefits on atherogenesis.

Similar content being viewed by others

References

  1. Feige JN et al. (2006) From molecular action to physiological outputs: peroxisome proliferator-activated receptors are nuclear receptors at the crossroads of key cellular functions. Prog Lipid Res 45: 120–159

    Article  CAS  Google Scholar 

  2. Marx N et al. (2004) Peroxisome proliferator-activated receptors and atherogenesis: regulators of gene expression in vascular cells. Circ Res 94: 1168–1178

    Article  CAS  Google Scholar 

  3. Fu J et al. (2003) Oleylethanolamide regulates feeding and body weight through activation of the nuclear receptor PPAR-α. Nature 425: 90–93

    Article  CAS  Google Scholar 

  4. Gervois P et al. (1999) Fibrates increase human REV-ERBα expression in liver via a novel peroxisome proliferator-activated receptor response element. Mol Endocrinol 13: 400–409

    CAS  PubMed  Google Scholar 

  5. Delerive P et al. (2000) Induction of IκBα expression as a mechanism contributing to the anti-inflammatory activities of peroxisome proliferator-activated receptor-α activators. J Biol Chem 275: 36703–36707

    Article  CAS  Google Scholar 

  6. Gervois P et al. (2004) Global suppression of IL-6-induced acute phase response gene expression after in vivo chronic treatment with the peroxisome proliferator-activated receptor α activator fenofibrate. J Biol Chem 279: 16154–16160

    Article  CAS  Google Scholar 

  7. Gervois P et al. (2000) Regulation of lipid and lipoprotein metabolism by PPAR activators. Clin Chem Lab Med 38: 3–11

    Article  CAS  Google Scholar 

  8. Vu-Dac N et al. (2003) Apolipoprotein A5, a crucial determinant of plasma triglyceride levels, is highly responsive to peroxisome proliferator activated receptor α. J Biol Chem 278: 17982–17985

    Article  CAS  Google Scholar 

  9. Ross R (1999) Atherosclerosis: an inflammatory disease. N Engl J Med 340: 115–126

    Article  CAS  Google Scholar 

  10. Marx N et al. (1999) PPARα activators inhibit cytokine-induced vascular cell adhesion molecule-1 expression in human endothelial cells. Circulation 99: 3125–3131

    Article  CAS  Google Scholar 

  11. Shu H et al. (2000) Activation of PPARα or γ reduces secretion of matrix metalloproteinase 9 but not interleukin-8 from human monocytic THP-1 cells. Biochem Biophys Res Commun 267: 345–349

    Article  CAS  Google Scholar 

  12. Ridker PM et al. (2000) C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N Engl J Med 342: 836–843

    Article  CAS  Google Scholar 

  13. Danesh J et al. (2005) Plasma fibrinogen level and the risk of major cardiovascular diseases and nonvascular mortality: an individual participant meta-analysis. JAMA 294: 1799–1809

    CAS  PubMed  Google Scholar 

  14. Gervois P et al. (2001) Negative regulation of human fibrinogen gene expression by peroxisome proliferator-activated receptor α agonists via inhibition of CCAAT box/enhancer-binding protein β. J Biol Chem 276: 33471–33477

    Article  CAS  Google Scholar 

  15. Kleemann R et al. (2003) Fibrates down-regulate IL-1-stimulated C-reactive protein gene expression in hepatocytes by reducing p50-NF-κB-C/EBP-β complex formation. Blood 101: 545–551

    Article  CAS  Google Scholar 

  16. Wu KK et al. (2005) Increased hypercholesterolemia and atherosclerosis in mice lacking both ApoE and leptin receptor. Atherosclerosis 181: 251–259

    Article  CAS  Google Scholar 

  17. Tordjman K et al. (2001) PPARα deficiency reduces insulin resistance and atherosclerosis in apoE-null mice. J Clin Invest 107: 1025–1034

    Article  CAS  Google Scholar 

  18. Staels B and Fruchart JC (2005) Therapeutic roles of peroxisome proliferator-activated receptor agonists. Diabetes 54: 2460–2470

    Article  CAS  Google Scholar 

  19. Frick MH et al. (1987) Helsinki Heart Study: primary prevention trial with gemfibrozil in middle-aged men with dyslipidemia. Safety of treatment, changes in risk factors, and incidence of coronary heart disease. N Engl J Med 317: 1237–1245

    Article  CAS  Google Scholar 

  20. Elkeles RS et al. (1998) Cardiovascular outcomes in type 2 diabetes. A double-blind placebo-controlled study of bezafibrate: the St. Mary's, Ealing, Northwick Park Diabetes Cardiovascular Disease Prevention (SENDCAP) Study. Diabetes Care 21: 641–648

    Article  CAS  Google Scholar 

  21. FIELD-Investigators (2005) Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet 366: 1849–1861

  22. ACCORD Trial Homepage [http://www.accordtrial.org/public/index.cfm] (accessed 8 September 2006)

  23. He W et al. (2003) Adipose-specific peroxisome proliferator-activated receptor γ knockout mice causes insulin resistance in fat and liver but not in muscle. Proc Natl Acad Sci USA 100: 15712–15717

    Article  CAS  Google Scholar 

  24. Barak Y et al. (1999) PPAR γ is required for placenta, cardiac, and adipose tissue development. Mol Cell 4: 585–595

    Article  CAS  Google Scholar 

  25. Kubota N et al. (1999) PPAR γ mediates high fat diet-induced adipocyte hypertrophy and insulin resistance. Mol Cell 4: 597–609

    Article  CAS  Google Scholar 

  26. Rosen ED et al. (1999) PPAR γ is required for the differentiation of adipose tissue in vitro and in vivo . Mol Cell 4: 611–617

    Article  CAS  Google Scholar 

  27. Savage DB et al. (2003) Human metabolic syndrome resulting from dominant-negative mutations in the nuclear receptor peroxisome proliferator-activated receptor-γ. Diabetes 52: 910–917

    Article  CAS  Google Scholar 

  28. Chao L et al. (2000) Adipose tissue is required for the antidiabetic, but not for the hypolipidemic, effect of thiazolidinediones. J Clin Invest 106: 1221–1228

    Article  CAS  Google Scholar 

  29. Walczak R and Tontonoz P (2002) PPARadigms and PPARadoxes: expanding roles for PPARγ in the control of lipid metabolism. J Lipid Res 43: 177–186

    CAS  PubMed  Google Scholar 

  30. De Vos P et al. (1996) Thiazolidinediones repress ob gene expression in rodents via activation of peroxisome proliferator-activated receptor γ. J Clin Invest 98: 1004–1009

    Article  CAS  Google Scholar 

  31. Iwaki M et al. (2003) Induction of adiponectin, a fat-derived antidiabetic and antiatherogenic factor, by nuclear receptors. Diabetes 52: 1655–1663

    Article  CAS  Google Scholar 

  32. Nawrocki AR et al. (2006) Mice lacking adiponectin show decreased hepatic insulin sensitivity and reduced responsiveness to peroxisome proliferator-activated receptor γ agonists. J Biol Chem 281: 2654–2660

    Article  CAS  Google Scholar 

  33. Weisberg SP et al. (2003) Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112: 1796–1808

    Article  CAS  Google Scholar 

  34. Xu H et al. (2003) Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 112: 1821–1830

    Article  CAS  Google Scholar 

  35. Pasceri V et al. (2000) Modulation of vascular inflammation in vitro and in vivo by peroxisome proliferator-activated receptor-γ activators. Circulation 101: 235–238

    Article  CAS  Google Scholar 

  36. Li AC and Palinski W (2006) Peroxisome proliferator-activated receptors: how their effects on macrophages can lead to the development of a new drug therapy against atherosclerosis. Annu Rev Pharmacol Toxicol 46: 1–39

    Article  Google Scholar 

  37. Pascual G et al. (2005) A SUMOylation-dependent pathway mediates transrepression of inflammatory response genes by PPAR-γ. Nature 437: 759–763

    Article  CAS  Google Scholar 

  38. Chen Z et al. (2001) Troglitazone inhibits atherosclerosis in apolipoprotein E-knockout mice:pleiotropic effects on CD36 expression and HDL. Arterioscler Thromb Vasc Biol 21: 372–377

    Article  CAS  Google Scholar 

  39. Li AC et al. (2000) Peroxisome proliferator-activated receptor γ ligands inhibit development of atherosclerosis in LDL receptor-deficient mice. J Clin Invest 106: 523–531

    Article  CAS  Google Scholar 

  40. Chawla A et al. (2001) A PPAR γ-LXR-ABCA1 pathway in macrophages is involved in cholesterol efflux and atherogenesis. Mol Cell 7: 161–171

    Article  CAS  Google Scholar 

  41. Xiang AH et al. (2006) Effect of pioglitazone on pancreatic-β cell function and diabetes risk in Hispanic women with prior gestational diabetes. Diabetes 55: 517–522

    Article  CAS  Google Scholar 

  42. Mayerson AB et al. (2002) The effects of rosiglitazone on insulin sensitivity, lipolysis, and hepatic and skeletal muscle triglyceride content in patients with type 2 diabetes. Diabetes 51: 797–802

    Article  CAS  Google Scholar 

  43. Bajaj M et al. (2003) Pioglitazone reduces hepatic fat content and augments splanchnic glucose uptake in patients with type 2 diabetes. Diabetes 52: 1364–1370

    Article  CAS  Google Scholar 

  44. Turner RC et al. (1998) Risk factors for coronary artery disease in non-insulin dependent diabetes mellitus: United Kingdom Prospective Diabetes Study (UKPDS: 23). BMJ 316: 823–828

    Article  CAS  Google Scholar 

  45. Malmberg K et al. (2000) Impact of diabetes on long-term prognosis in patients with unstable angina and non-Q-wave myocardial infarction: results of the OASIS (Organization to Assess Strategies for Ischemic Syndromes) Registry. Circulation 102: 1014–1019

    Article  CAS  Google Scholar 

  46. Sunayama S et al. (1999) Effects of troglitazone on atherogenic lipoprotein phenotype in coronary patients with insulin resistance. Atherosclerosis 146: 187–193

    Article  CAS  Google Scholar 

  47. Goldberg RB et al. (2005) A comparison of lipid and glycemic effects of pioglitazone and rosiglitazone in patients with type 2 diabetes and dyslipidemia. Diabetes Care 28: 1547–1554

    Article  CAS  Google Scholar 

  48. Langenfeld MR et al. (2005) Pioglitazone decreases carotid intima-media thickness independently of glycemic control in patients with type 2 diabetes mellitus: results from a controlled randomized study. Circulation 111: 2525–2531

    Article  CAS  Google Scholar 

  49. Sidhu JS et al. (2004) Effect of rosiglitazone on common carotid intima-media thickness progression in coronary artery disease patients without diabetes mellitus. Arterioscler Thromb Vasc Biol 24: 930–934

    Article  CAS  Google Scholar 

  50. Choi D et al. (2004) Preventative effects of rosiglitazone on restenosis after coronary stent implantation in patients with type 2 diabetes. Diabetes Care 27: 2654–2660

    Article  CAS  Google Scholar 

  51. Marx N et al. (2005) Pioglitazone reduces neointima volume after coronary stent implantation: a randomized, placebo-controlled, double-blind trial in nondiabetic patients. Circulation 112: 2792–2798

    Article  CAS  Google Scholar 

  52. Meisner F et al. (2006) Effect of rosiglitazone treatment on plaque inflammation and collagen content in nondiabetic patients. Data from a randomized placebo-controlled trial. Arterioscler Thromb Vasc Biol 26: 845–850

    Article  CAS  Google Scholar 

  53. Dormandy JA et al. (2005) Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet 366: 1279–1289

    Article  CAS  Google Scholar 

  54. PROactive (online 9 February 2006) The official PROactive results [http://www.proactive-results.com/html/results.htm] (accessed 9 September 2006)

  55. Home PD et al. (2005) Rosiglitazone Evaluated for Cardiac Outcomes and Regulation of Glycaemia in Diabetes (RECORD): study design and protocol. Diabetologia 48: 1726–1735

    Article  CAS  Google Scholar 

  56. Xu HE et al. (1999) Molecular recognition of fatty acids by peroxisome proliferator-activated receptors. Mol Cell 3: 397–403

    Article  CAS  Google Scholar 

  57. Bastie C et al. (1999) Expression of peroxisome proliferator-activated receptor PPARδ promotes induction of PPARγ and adipocyte differentiation in 3T3C2 fibroblasts. J Biol Chem 274: 21920–21925

    Article  CAS  Google Scholar 

  58. Barak Y et al. (2002) Effects of peroxisome proliferator-activated receptor δ on placentation, adiposity, and colorectal cancer. Proc Natl Acad Sci USA 99: 303–308

    Article  CAS  Google Scholar 

  59. Tanaka T et al. (2003) Activation of peroxisome proliferator-activated receptor δ induces fatty acids oxidation in skeletal muscle and attenuates metabolic syndrome. Proc Natl Acad Sci USA 100: 15924–15929

    Article  CAS  Google Scholar 

  60. Wang YX et al. (2003) Peroxisome-proliferator-activated receptor δ activates fat metabolism to prevent obesity. Cell 113: 159–170

    Article  CAS  Google Scholar 

  61. Lee CH et al. (2003) Transcriptional repression of atherogenic inflammation: modulation by PPARδ. Science 302: 453–457

    Article  CAS  Google Scholar 

  62. Van der Veen JN et al. (2005) Reduced cholesterol absorption upon PPARδ activation coincides with decreased intestinal expression of NPC1L1. J Lipid Res 46: 526–534

    Article  CAS  Google Scholar 

  63. Leibowitz MD et al. (2000) Activation of PPARδ alters lipid metabolism in db/db mice. FEBS Lett 473: 333–336

    Article  CAS  Google Scholar 

  64. Akiyama TE et al. (2004) Peroxisome proliferator-activated receptor β/δ regulates very low density lipoprotein production and catabolism in mice on a Western diet. J Biol Chem 279: 20874–20881

    Article  CAS  Google Scholar 

  65. Dressel U et al. (2003) The peroxisome proliferator-activated receptor β/δ agonist, GW501516, regulates the expression of genes involved in lipid catabolism and energy uncoupling in skeletal muscle cells. Mol Endocrinol 17: 2477–2493

    Article  CAS  Google Scholar 

  66. Rival Y et al. (2002) PPARα and PPARδ activators inhibit cytokine-induced nuclear translocation of NF-κB and expression of VCAM-1 in EAhy926 endothelial cells. Eur J Pharmacol 435: 143–151

    Article  CAS  Google Scholar 

  67. Li AC et al. (2004) Differential inhibition of macrophage foam-cell formation and atherosclerosis in mice by PPARα, β/δ, and γ. J Clin Invest 114: 1538–1540

    Article  Google Scholar 

  68. Graham TL et al. (2005) The PPARδ agonist GW0742X reduces atherosclerosis in LDLR(−/−) mice. Atherosclerosis 181: 29–37

    Article  CAS  Google Scholar 

  69. Camp HS et al. (2000) Differential activation of peroxisome proliferator-activated receptor-γ by troglitazone and rosiglitazone. Diabetes 49: 539–547

    Article  CAS  Google Scholar 

  70. Derosa G et al. (2004) Metabolic effects of pioglitazone and rosiglitazone in patients with diabetes and metabolic syndrome treated with glimepiride: a twelve-month, multicenter, double-blind, randomized, controlled, parallel-group trial. Clin Ther 26: 744–754

    Article  CAS  Google Scholar 

  71. Mukherjee R et al. (2000) A selective peroxisome proliferator-activated receptor-γ (PPARγ) modulator blocks adipocyte differentiation but stimulates glucose uptake in 3T3-L1 adipocytes. Mol Endocrinol 14: 1425–1433

    CAS  PubMed  Google Scholar 

  72. Berger JP et al. (2003) Distinct properties and advantages of a novel peroxisome proliferator-activated protein-γ selective modulator. Mol Endocrinol 17: 662–676

    Article  CAS  Google Scholar 

  73. Schiffrin EL et al. (2005) Peroxisome proliferator-activated receptors and cardiovascular remodeling. Am J Physiol Heart Circ Physiol 288: 1037–1043

    Article  Google Scholar 

  74. Finck BN et al. (2002) The cardiac phenotype induced by PPARα overexpression mimics that caused by diabetes mellitus. J Clin Invest 109: 121–130

    Article  CAS  Google Scholar 

  75. Chakrabarti R et al. (2003) Ragaglitazar: a novel PPAR α PPAR γ agonist with potent lipid-lowering and insulin-sensitizing efficacy in animal models. Br J Pharmacol 140: 527–537

    Article  CAS  Google Scholar 

  76. Hegarty BD et al. (2004) Peroxisome proliferator-activated receptor (PPAR) activation induces tissue-specific effects on fatty acid uptake and metabolism in vivo—a study using the novel PPARα/γ agonist tesaglitazar. Endocrinology 145: 3158–3164

    Article  CAS  Google Scholar 

  77. Skrumsager BK et al. (2003) Ragaglitazar: the pharmacokinetics, pharmacodynamics, and tolerability of a novel dual PPAR α and γ agonist in healthy subjects and patients with type 2 diabetes. J Clin Pharmacol 43: 1244–1256

    Article  CAS  Google Scholar 

  78. Saad MF et al. (2004) Ragaglitazar improves glycemic control and lipid profile in type 2 diabetic subjects: a 12-week, double-blind, placebo-controlled dose-ranging study with an open pioglitazone arm. Diabetes Care 27: 1324–1329

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Gervois.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gervois, P., Fruchart, JC. & Staels, B. Drug Insight: mechanisms of action and therapeutic applications for agonists of peroxisome proliferator-activated receptors. Nat Rev Endocrinol 3, 145–156 (2007). https://doi.org/10.1038/ncpendmet0397

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpendmet0397

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing