Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Electronic coherence lineshapes reveal hidden excitonic correlations in photosynthetic light harvesting

Abstract

The effective absorption cross-section of a molecule (acceptor) can be greatly increased by associating it with a cluster of molecules that absorb light and transfer the excitation energy to the acceptor molecule. The basic mechanism of such light harvesting by Förster resonance energy transfer (FRET) is well established, but recent experiments have revealed a new feature whereby excitation is coherently shared among donor and acceptor molecules during FRET. In the present study, two-dimensional electronic spectroscopy was used to examine energy transfer at ambient temperature in a naturally occurring light-harvesting protein (PE545 of the marine cryptophyte alga Rhodomonas sp. strain CS24). Quantum beating was observed across a range of excitation frequencies. The shapes of those features in the two-dimensional spectra were examined. Through simulations, we show that two-dimensional electronic spectroscopy provides a probe of the adiabaticity of the free energy landscape underlying light harvesting.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural model and measurements of PE545.
Figure 2: Broadband excitation of PE545.
Figure 3: Difference spectra highlighting the oscillating signal amplitude.
Figure 4: Structural model and measurements of HT–CpcA–PEB.
Figure 5: Simulated energy trajectories and absorption lineshapes.

Similar content being viewed by others

References

  1. Scholes, G. D., Fleming, G. R., Olaya-Castro, A. & van Grondelle, R. Lessons from nature about solar light harvesting. Nature Chem. 3, 763–774 (2011).

    Article  CAS  Google Scholar 

  2. van der Meer, B. W., Coker, G. & Chen, S-Y. S. Resonance Energy Transfer: Theory and Data (VCH, 1994).

    Google Scholar 

  3. Förster, T. in Modern Quantum Chemistry: Istanbul Lectures. Part III, Action of Light and Organic Crystals (ed. Sinanoglu, O.) 93–137 (Academic Press, 1965).

    Google Scholar 

  4. Beljonne, D., Curutchet, C., Scholes, G. D. & Silbey, R. J. Beyond Forster resonance energy transfer in biological and nanoscale systems. J. Phys. Chem. B 113, 6583–6599 (2009).

    Article  CAS  Google Scholar 

  5. Fleming, G. R. & Scholes, G. D. Physical chemistry—quantum mechanics for plants. Nature 431, 256–257 (2004).

    Article  CAS  Google Scholar 

  6. Cheng, Y. C. & Fleming, G. R. Dynamics of light harvesting in photosynthesis. Annu. Rev. Phys. Chem. 60, 241–262 (2009).

    Article  CAS  Google Scholar 

  7. van Grondelle, R. & Novoderezhkin, V. I. Energy transfer in photosynthesis: experimental insights and quantitative models. Phys. Chem. Chem. Phys. 8, 793–807 (2006).

    Article  CAS  Google Scholar 

  8. Novoderezhkin, V. & van Grondelle, R. Physical origins and models of energy transfer in photosynthetic light-harvesting. Phys. Chem. Chem. Phys. 12, 7352–7365 (2010).

    Article  CAS  Google Scholar 

  9. Collini, E. et al. Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature. Nature 463, 644–649 (2010).

    Article  CAS  Google Scholar 

  10. Engel, G. S. et al. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446, 782–786 (2007).

    Article  CAS  Google Scholar 

  11. Panitchayangkoon, G. et al. Long-lived quantum coherence in photosynthetic complexes at physiological temperature. Proc. Natl Acad. Sci. USA 107, 12766–12770 (2010).

    Article  CAS  Google Scholar 

  12. Collini, E. & Scholes, G. D. Coherent intrachain energy migration in a conjugated polymer at room temperature. Science 323, 369–373 (2009).

    Article  CAS  Google Scholar 

  13. Lee, H., Cheng, Y. C. & Fleming, G. R. Coherence dynamics in photosynthesis: protein protection of excitonic coherence. Science 316, 1462–1465 (2007).

    Article  CAS  Google Scholar 

  14. Mercer, I. P. et al. Instantaneous mapping of coherently coupled electronic transitions and energy transfers in a photosynthetic complex using angle-resolved coherent optical wave-mixing. Phys. Rev. Lett. 102, 057402 (2009).

    Article  Google Scholar 

  15. Calhoun, T. R. et al. Quantum coherence enabled determination of the energy landscape in light-harvesting complex II. J. Phys. Chem. B 113, 16291–16295 (2009).

    Article  CAS  Google Scholar 

  16. Rebentrost, P., Mohseni, M. & Aspuru-Guzik, A. Role of quantum coherence and environmental fluctuations in chromophoric energy transport. J. Phys. Chem. B 113, 9942–9947 (2009).

    Article  CAS  Google Scholar 

  17. Fassioli, F. & Olaya-Castro, A. Distribution of entanglement in light-harvesting complexes and their quantum efficiency. New J. Phys. 12, 085006 (2010).

    Article  Google Scholar 

  18. Ishizaki, A. & Fleming, G. R. Theoretical examination of quantum coherence in a photosynthetic system at physiological temperature. Proc. Natl Acad. Sci. USA 106, 17255–17260 (2009).

    Article  Google Scholar 

  19. Caruso, F., Chin, A. W., Datta, A., Huelga, S. F. & Plenio, M. B. Entanglement and entangling power of the dynamics in light-harvesting complexes. Phys. Rev. A 81, 062346 (2010).

    Article  Google Scholar 

  20. Hoyer, S., Sarovar, M. & Whaley, K. B. Limits of quantum speedup in photosynthetic light harvesting. New J. Phys. 12, 065041 (2010).

    Article  Google Scholar 

  21. Andrews, D. L., Curutchet, C. & Scholes, G. D. Resonance energy transfer: beyond the limits. Lasers Photon. Rev. 5, 114–123 (2011).

    Article  CAS  Google Scholar 

  22. Turner, D. B., Wilk, K. E., Curmi, P. M. G. & Scholes, G. D. Comparison of electronic and vibrational coherence measured by two-dimensional electronic spectroscopy. J. Phys. Chem. Lett. 2, 1904–1911 (2011).

    Article  CAS  Google Scholar 

  23. Cerino, F. & Zingone, A. in Unravelling the Algae: The Past, Present, and Future of Algal Systematics (eds Brodie, J. & Lewis, J.) Ch. 11, 197 (CRC Press, 2007).

    Google Scholar 

  24. Wedemayer, G. J., Kidd, D. G. & Glazer, A. N. Cryptomonad biliproteins: bilin types and locations. Photosynth. Res. 48, 163–170 (1996).

    Article  CAS  Google Scholar 

  25. Wilk, K. E. et al. Evolution of a light-harvesting protein by addition of new subunits and rearrangement of conserved elements: crystal structure of a cryptophyte phycoerythrin at 1.63-ångstrom resolution. Proc. Natl Acad. Sci. USA 96, 8901–8906 (1999).

    Article  CAS  Google Scholar 

  26. MacColl, R. Cyanobacterial phycobilisomes. J. Struct. Biol. 124, 311–334 (1998).

    Article  CAS  Google Scholar 

  27. Faust, M. A. & Gantt, E. Effect of light-intensity and glycerol on growth, pigment composition, and ultrastructure of Chroomonas sp. J. Phycol. 9, 489–495 (1973).

    CAS  Google Scholar 

  28. Frauenfelder, H. & Wolynes, P. G. Rate theories and puzzles of hemeprotein kinetics. Science 229, 337–345 (1985).

    Article  CAS  Google Scholar 

  29. Jonas, D. M. Two-dimensional femtosecond spectroscopy. Annu. Rev. Phys. Chem. 54, 425–463 (2003).

    Article  CAS  Google Scholar 

  30. Cho, M. H., Brixner, T., Stiopkin, I., Vaswani, H. & Fleming, G. R. Two dimensional electronic spectroscopy of molecular complexes. J. Chin. Chem. Soc. 53, 15–24 (2006).

    Article  CAS  Google Scholar 

  31. Abramavicius, D., Palmieri, B., Voronine, D. V., Sanda, F. & Mukamel, S. Coherent multidimensional optical spectroscopy of excitons in molecular aggregates; quasiparticle versus supermolecule perspectives. Chem. Rev. 109, 2350–2408 (2009).

    Article  CAS  Google Scholar 

  32. Milota, F., Sperling, J., Nemeth, A., Mancal, T. & Kaufmann, H. F. Two-dimensional electronic spectroscopy of molecular excitons. Acc. Chem. Res. 42, 1364–1374 (2009).

    Article  CAS  Google Scholar 

  33. Hochstrasser, R. M. Two-dimensional spectroscopy at infrared and optical frequencies. Proc. Natl Acad. Sci. USA 104, 14190–14196 (2007).

    Article  CAS  Google Scholar 

  34. Gallagher Fader, S. M. & Jonas, D. M. Two-dimensional electronic correlation and relaxation spectra: theory and model calculations. J. Phys. Chem. A 1999, 10489–10505 (1999).

    Article  Google Scholar 

  35. Novoderezhkin, V. I., Doust, A. B., Curutchet, C., Scholes, G. D. & van Grondelle, R. Excitation dynamics in phycoerythrin 545: modeling of steady-state spectra and transient absorption with modified Redfield theory. Biophys. J. 99, 344–352 (2010).

    Article  CAS  Google Scholar 

  36. Roberts, S. T., Loparo, J. J. & Tokmakoff, A. Characterization of spectral diffusion from two-dimensional line shapes. J. Chem. Phys. 125, 084502 (2006).

    Article  Google Scholar 

  37. Christensson, N. et al. High frequency vibrational modulations in two-dimensional electronic spectra and their resemblance to electronic coherence signatures. J. Phys. Chem. B 115, 5383–5391 (2011).

    Article  CAS  Google Scholar 

  38. Alvey, R. M., Biswas, A., Schluchter, W. M. & Bryant, D. A. Effects of modified phycobilin biosynthesis in the cyanobacterium Synechococcus sp. strain PCC 7002. J. Bacteriol. 193, 1663–1671 (2011).

    Article  CAS  Google Scholar 

  39. Duerring, M., Schmidt, G. B. & Huber, R. Isolation, crystalization, crystal structure analysis and refinement of constitutive C-phycocyanin from the chromatically adapting cyanobacterium Fremyella diplosiphon at 1.66 Å resolution. J. Mol. Biol. 217, 577–592 (1991).

    Article  CAS  Google Scholar 

  40. Doust, A. B. et al. Developing a structure–function model for the cryptophyte phycoerythrin 545 using ultrahigh resolution crystallography and ultrafast laser spectroscopy. J. Mol. Biol. 344, 135–153 (2004).

    Article  CAS  Google Scholar 

  41. Huo, P. & Coker, D. F. Theoretical study of coherent excitation energy transfer in cryptophyte phycocyanin 645 at physiological temperature. J. Phys. Chem. Lett. 2, 825–833 (2011).

    Article  CAS  Google Scholar 

  42. Hanna, G. & Kapral, R. Nonadiabatic dynamics of condensed phase rate processes. Acc. Chem. Res. 39, 21–27 (2006).

    Article  CAS  Google Scholar 

  43. Fenimore, P. W., Frauenfelder, H., McMahon, B. H. & Parak, F. G. Slaving: solvent fluctuations dominate protein dynamics and functions. Proc. Natl Acad. Sci. USA 99, 16047–16051 (2002).

    Article  CAS  Google Scholar 

  44. Sergi, A., Mac Kernan, D., Ciccotti, G. & Kapral, R. Simulating quantum dynamics in classical environments. Theor. Chem. Acc. 110, 49–58 (2003).

    Article  CAS  Google Scholar 

  45. Nandi, N., Bhattacharyya, K. & Bagchi, B. Dielectric relaxation and solvation dynamics of water in complex chemical and biological systems. Chem. Rev. 100, 2013–2045 (2000).

    Article  CAS  Google Scholar 

  46. Olbrich, C., Strümpfer, J., Schulten, K. & Kleinekathöfer, U. Quest for spatially correlated fluctuations in the FMO light-harvesting complex. J. Phys. Chem. B 115, 758–764 (2011).

    Article  CAS  Google Scholar 

  47. Peng, J., Castonguay, T. C., Coker, D. F. & Ziegler, L. D. Ultrafast H2 and D2 rotational Raman responses in near critical CO2: an experimental and theoretical study of anisotropic solvation dynamics. J. Chem. Phys. 131, 054501 (2009).

    Article  CAS  Google Scholar 

  48. Warshel, A. & Parson, W. W. Computer simulations of electron-transfer reactions in solution and in photosynthetic reaction centers. Annu. Rev. Phys. Chem. 42, 279–309 (1991).

    Article  CAS  Google Scholar 

  49. Scholes, G. D. & Rumbles, G. Excitons in nanoscale systems. Nature Mater. 5, 683–696 (2006).

    Article  CAS  Google Scholar 

  50. Simpson, W. T. & Peterson, D. L. Coupling strength for resonance force transfer of electronic energy in van der Waals solids. J. Chem. Phys. 26, 588–593 (1957).

    Article  CAS  Google Scholar 

  51. Craig, D. P. & Walmsley, S. H. Excitons in Molecular Crystals (Benjamin, 1968).

    Google Scholar 

  52. Jang, S., Cheng, Y-C., Reichman, D. R. & Eaves, J. D. Theory of coherent resonance energy transfer. J. Chem. Phys. 129, 101104 (2008).

    Article  Google Scholar 

  53. Cheng, Y-C. & Silbey, R. J. Coherence in the B800 ring of purple bacteria LH2. Phys. Rev. Lett. 96, 028103 (2006).

    Article  CAS  Google Scholar 

  54. Khalil, M., Demirdoven, N. & Tokmakoff, A. Obtaining absorptive line shapes in two-dimensional infrared vibrational correlation spectra. Phys. Rev. Lett. 90, 047401 (2003).

    Article  CAS  Google Scholar 

  55. Knapp, E. W. Lineshapes of molecular aggregates. Exchange narrowing and intersite correlation. Chem. Phys. 85, 73–82 (1984).

    Article  CAS  Google Scholar 

  56. Heijs, D. J., Malyshev, V. A. & Knoester, J. Decoherence of excitons in multichromophore systems: thermal line broadening and destruction of superradiant emission. Phys Rev. Lett. 95, 177402 (2005).

    Article  CAS  Google Scholar 

  57. Xiao, L. & Coker, D. F. The influence of nonadiabatic rotational transitions on the line shapes of the rotational Raman sepctrum of H2 in liquid argon. J. Chem. Phys. 100, 8646–8655 (1994).

    Article  CAS  Google Scholar 

  58. Miller, W. H. Quantum dynamics of complex molecular systems. Proc. Natl Acad. Sci. USA 102, 6660–6664 (2005).

    Article  CAS  Google Scholar 

  59. Onuchic, J. N. & Wolynes, P. G. Classical and quantum pictures of reaction dynamics in condensed matter: resonances, dephasing, and all that. J. Phys. Chem. 92, 6495–6503 (1988).

    Article  CAS  Google Scholar 

  60. Onuchic, J. N., Beratan, D. N. & Hopfield, J. J. Some aspects of electron-transfer reaction dynamics. J. Phys. Chem. 90, 3707–3721 (1986).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Sciences and Engineering Research Council of Canada, the US Air Force Office of Scientific Research (FA9550-10-1-0260) and DARPA (QuBE, G.D.S.), the Australian Research Council (P.M.G.C.) and by grants from the US National Science Foundation (MCB-0519743 and MCB-1021725 to D.A.B.). P. Brumer, R. Kapral and R. Dinshaw are thanked for discussions.

Author information

Authors and Affiliations

Authors

Contributions

C.Y.W. performed all spectroscopic experiments and data analysis except those reported in Fig. 2. D.B.T. performed the experiments reported in Fig. 2. R.M.A. and D.A.B. prepared and purified the CpcA–PEB protein. K.E.W. and P.M.G.C. cultured the Rhodomonas CS24 algae and isolated and purified the PE545 antenna protein. G.D.S. performed the quantum-classical calculations of the exciton states and, with R.J.S., interpreted the correlation phenomena. C.Y.W. and G.D.S. wrote the paper and planned the research. All authors commented on the manuscript.

Corresponding author

Correspondence to Gregory D. Scholes.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1594 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wong, C., Alvey, R., Turner, D. et al. Electronic coherence lineshapes reveal hidden excitonic correlations in photosynthetic light harvesting. Nature Chem 4, 396–404 (2012). https://doi.org/10.1038/nchem.1302

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1302

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing