Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

USP15 is a deubiquitylating enzyme for receptor-activated SMADs

Abstract

The TGFβ pathway is critical for embryonic development and adult tissue homeostasis. On ligand stimulation, TGFβ and BMP receptors phosphorylate receptor-activated SMADs (R-SMADs), which then associate with SMAD4 to form a transcriptional complex that regulates gene expression through specific DNA recognition1,2. Several ubiquitin ligases serve as inhibitors of R-SMADs3,4, yet no deubiquitylating enzyme (DUB) for these molecules has so far been identified. This has left unexplored the possibility that ubiquitylation of R-SMADs is reversible and engaged in regulating SMAD function, in addition to degradation5. Here we identify USP15 as a DUB for R-SMADs. USP15 is required for TGFβ and BMP responses in mammalian cells and Xenopus embryos. At the biochemical level, USP15 primarily opposes R-SMAD monoubiquitylation, which targets the DNA-binding domains of R-SMADs and prevents promoter recognition. As such, USP15 is critical for the occupancy of endogenous target promoters by the SMAD complex. These data identify an additional layer of control by which the ubiquitin system regulates TGFβ biology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: USP15 is a DUB required for TGFβ and BMP gene responses.
Figure 2: USP15 is required for TGFβ and BMP biological effects.
Figure 3: USP15 is a DUB for R-SMADs.
Figure 4: R-SMAD activation and nuclear entry promote monoubiquitylation.
Figure 5: USP15-dependent regulative SMAD3 ubiquitylation inhibits DNA binding.

Similar content being viewed by others

References

  1. Wu, M. Y. & Hill, C. S. Tgf-β superfamily signaling in embryonic development and homeostasis. Dev. Cell 16, 329–343 (2009).

    Article  CAS  Google Scholar 

  2. Wrana, J. L., Ozdamar, B., Le Roy, C. & Benchabane, H. Signaling Receptors of the TGF β family (Cold Spring Harbor Laboratory Press, 2008).

    Google Scholar 

  3. Itoh, S. & ten Dijke, P. Negative regulation of TGF-β receptor/Smad signal transduction. Curr. Opin. Cell Biol. 19, 176–184 (2007).

    Article  CAS  Google Scholar 

  4. Lonn, P., Moren, A., Raja, E., Dahl, M. & Moustakas, A. Regulating the stability of TGFβ receptors and Smads. Cell Res. 19, 21–35 (2009).

    Article  Google Scholar 

  5. Salmena, L. & Pandolfi, P. P. Changing venues for tumour suppression: balancing destruction and localization by monoubiquitylation. Nat. Rev. Cancer 7, 409–413 (2007).

    Article  CAS  Google Scholar 

  6. Nijman, S. M. et al. A genomic and functional inventory of deubiquitinating enzymes. Cell 123, 773–786 (2005).

    Article  CAS  Google Scholar 

  7. Dupont, S. et al. FAM/USP9x, a deubiquitinating enzyme essential for TGFβ signaling, controls Smad4 monoubiquitination. Cell 136, 123–135 (2009).

    Article  CAS  Google Scholar 

  8. Baker, R. T., Wang, X. W., Woollatt, E., White, J. A. & Sutherland, G. R. Identification, functional characterization, and chromosomal localization of USP15, a novel human ubiquitin-specific protease related to the UNP oncoprotein, and a systematic nomenclature for human ubiquitin-specific proteases. Genomics 59, 264–274 (1999).

    Article  CAS  Google Scholar 

  9. Miyazono, K., Maeda, S. & Imamura, T. Coordinate regulation of cell growth and differentiation by TGF-β superfamily and Runx proteins. Oncogene 23, 4232–4237 (2004).

    Article  CAS  Google Scholar 

  10. Akhurst, R. J. & Derynck, R. TGF-β signaling in cancer—a double-edged sword. Trends Cell Biol. 11, S44–S51 (2001).

    CAS  PubMed  Google Scholar 

  11. Niehrs, C. Regionally specific induction by the Spemann–Mangold organizer. Nat. Rev. Genet. 5, 425–434 (2004).

    CAS  PubMed  Google Scholar 

  12. De Robertis, E. M., Larrain, J., Oelgeschlager, M. & Wessely, O. The establishment of Spemann’s organizer and patterning of the vertebrate embryo. Nat. Rev. Genet. 1, 171–181 (2000).

    Article  CAS  Google Scholar 

  13. Fuentealba, L. C. et al. Integrating patterning signals: Wnt/GSK3 regulates the duration of the BMP/Smad1 signal. Cell 131, 980–993 (2007).

    Article  CAS  Google Scholar 

  14. Zhu, H., Kavsak, P., Abdollah, S., Wrana, J. L. & Thomsen, G. H. A SMAD ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation. Nature 400, 687–693 (1999).

    Article  CAS  Google Scholar 

  15. Sapkota, G., Alarcon, C., Spagnoli, F. M., Brivanlou, A. H. & Massague, J. Balancing BMP signaling through integrated inputs into the Smad1 linker. Mol. Cell 25, 441–454 (2007).

    Article  CAS  Google Scholar 

  16. Hill, C. S. Nucleocytoplasmic shuttling of Smad proteins. Cell Res. 19, 36–46 (2009).

    Article  CAS  Google Scholar 

  17. Stroschein, S. L., Wang, W., Zhou, S., Zhou, Q. & Luo, K. Negative feedback regulation of TGF-β signaling by the SnoN oncoprotein. Science 286, 771–774 (1999).

    Article  CAS  Google Scholar 

  18. Shi, Y. Structural insights on Smad function in TGFβ signaling. Bioessays 23, 223–232 (2001).

    Article  CAS  Google Scholar 

  19. Chai, J. et al. Features of a Smad3 MH1–DNA complex. Roles of water and zinc in DNA binding. J. Biol. Chem. 278, 20327–20331 (2003).

    Article  CAS  Google Scholar 

  20. Maspero, E. et al. Structure of the HECT:ubiquitin complex and its role in ubiquitin chain elongation. EMBO Rep. 12, 342–349 (2011).

    Article  CAS  Google Scholar 

  21. Chen, X., Rubock, M. J. & Whitman, M. A transcriptional partner for MAD proteins in TGF-β signalling. Nature 383, 691–696 (1996).

    Article  CAS  Google Scholar 

  22. Inman, G. J., Nicolas, F. J. & Hill, C. S. Nucleocytoplasmic shuttling of Smads 2, 3, and 4 permits sensing of TGF-β receptor activity. Mol. Cell 10, 283–294 (2002).

    Article  CAS  Google Scholar 

  23. Dai, F., Lin, X., Chang, C. & Feng, X. H. Nuclear export of Smad2 and Smad3by RanBP3 facilitates termination of TGF-β signaling. Dev. Cell 16, 345–357 (2009).

    Article  CAS  Google Scholar 

  24. Alarcon, C. et al. Nuclear CDKs drive Smad transcriptional activation and turnover in BMP and TGF-β pathways. Cell 139, 757–769 (2009).

    Article  CAS  Google Scholar 

  25. Dupont, S. et al. Germ-layer specification and control of cell growth by Ectodermin, a Smad4 ubiquitin ligase. Cell 121, 87–99 (2005).

    Article  CAS  Google Scholar 

  26. Morsut, L. et al. Negative control of Smad activity by ectodermin/Tif1γ patterns the mammalian embryo. Development 137, 2571–2578 (2010).

    Article  CAS  Google Scholar 

  27. Fukuda, M., Gotoh, I., Adachi, M., Gotoh, Y. & Nishida, E. A novel regulatory mechanism in the mitogen-activated protein (MAP) kinase cascade. Role ofnuclear export signal of MAP kinase kinase. J. Biol. Chem. 272, 32642–32648 (1997).

    Article  CAS  Google Scholar 

  28. Levy, L. et al. Arkadia activates Smad3/Smad4-dependent transcription by triggering signal-induced SnoN degradation. Mol. Cell Biol. 27, 6068–6083 (2007).

    Article  CAS  Google Scholar 

  29. Cordenonsi, M. et al. Integration of TGF-β and Ras/MAPK signaling through p53 phosphorylation. Science 315, 840–843 (2007).

    Article  CAS  Google Scholar 

  30. Martello, G. et al. MicroRNA control of Nodal signalling. Nature 449, 183–188 (2007).

    Article  CAS  Google Scholar 

  31. Yu, P. B. et al. Dorsomorphin inhibits BMP signals required for embryogenesis and iron metabolism. Nat. Chem. Biol. 4, 33–41 (2008).

    Article  CAS  Google Scholar 

  32. Adorno, M. et al. A Mutant-p53/Smad complex opposes p63 to empower TGFβ-induced metastasis. Cell 137, 87–98 (2009).

    Article  CAS  Google Scholar 

  33. Gao, S. et al. Ubiquitin ligase Nedd4L targets activated Smad2/3 to limit TGF-β signaling. Mol. Cell 36, 457–468 (2009).

    Article  CAS  Google Scholar 

  34. Cordenonsi, M et al. Links between tumor suppressors: p53 is required for TGF-β gene responses by cooperating with Smads. Cell 113, 301–314 (2003).

    Article  CAS  Google Scholar 

  35. Fontemaggi, G. et al. The transcriptional repressor ZEB regulates p73 expression at the crossroad between proliferation and differentiation. Mol. Cell Biol. 21, 8461–8470 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank W. Dubiel, P. ten Dijke, C. Hill, A. Moustakas and E. De Robertis for gifts of reagents, and E. Maspero and G. Fontemaggi for help with enzyme purification and ChIP. We are grateful to M. Aragona, F. Zanconato and O. Wessely for comments on the manuscript. This work is supported by grants from the following agencies: AIRC (Italian Association for Cancer Research) PI and AIRC Special Program Molecular Clinical Oncology ‘5 per mille’, University of Padua strategic grant, excellence grant IIT and Comitato Promotore Telethon grant to S.P., and AIRC and MIUR grants to S.D. and M.C. M.I. was a recipient of a Toyobo and Uehara Memorial Foundations grant and is a Marie Curie FP-7 IIF fellow.

Author information

Authors and Affiliations

Authors

Contributions

M.I. and S.P. designed research; M.I. and A. Manfrin carried out all the biochemical and functional assays in cells and Xenopus embryos. A. Mamidi and S.D. purified SMADs and carried out in vitro binding assays; G.M., S.S. and M.C. helped with Xenopus assays; L.M. and E.E. helped with mesenchymal stem cells and immunofluorescence; S.M. carried out the modelling analysis; S.P. prepared recombinant E3 ligases; S.P. coordinated the work; M.I. and S.P. wrote the manuscript.

Corresponding author

Correspondence to Stefano Piccolo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1102 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inui, M., Manfrin, A., Mamidi, A. et al. USP15 is a deubiquitylating enzyme for receptor-activated SMADs. Nat Cell Biol 13, 1368–1375 (2011). https://doi.org/10.1038/ncb2346

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2346

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing