Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Modulation of intracellular trafficking regulates cell intercalation in the Drosophila trachea

Abstract

Through intercalation, a fundamental mechanism underlying elongation during morphogenesis, epithelial cells exchange places in a spatially oriented manner1. Epithelial cells are tightly coupled through distinct intercellular junctions, including adherens junctions. Whether trafficking-mediated regulation of adhesion through adherens junctions modulates intercalation in vivo remains controversial1,2. In Drosophila melanogaster, cells in most branches intercalate during tracheal development. However, Wingless (Wg)-promoted expression of the transcription factor Spalt (Sal) in the dorsal trunk inhibits intercalation3 by an unknown mechanism. Here we have examined the role of trafficking in tracheal intercalation and show that it requires endocytosis, whereas it is opposed by Rab11-mediated recycling in the dorsal trunk. Subapical Rab11 accumulation is enhanced by sal and elevated Rab11-mediated recycling occurs in the dorsal trunk, suggesting that upregulation of Rab11 is one way in which sal inhibits intercalation. We found that dRip11, which regulates Rab11 localization and function4, is regulated by sal and can modulate intercalation. Finally, we provide evidence that levels of E-cadherin (DE-cad), an adherens junction component5 and Rab11-compartment cargo6,7,8, are dynamically regulated by trafficking during tracheal development, and that such regulation modulates intercalation. Our work suggests a mechanism by which trafficking of adhesion molecules regulates intercalation, and shows how this mechanism can be modulated in vivo to influence cell behaviour.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Relevant background information.
Figure 2: Trafficking and intercalation.
Figure 3: Rab11FIPs in the trachea.
Figure 4: DE-cad and intercalation in the trachea.
Figure 5: Model of trafficking-mediated modulation of intercalation during tracheal development.

Similar content being viewed by others

References

  1. Pilot, F. & Lecuit, T. Compartmentalized morphogenesis in epithelia: from cell to tissue shape. Dev. Dyn. 232, 685–694 (2005).

    Article  CAS  Google Scholar 

  2. D'Souza-Schorey, C. Disassembling adherens junctions: breaking up is hard to do. Trends Cell Biol. 15, 19–26 (2005).

    Article  CAS  Google Scholar 

  3. Ribeiro, C., Neumann, M. & Affolter, M. Genetic control of cell intercalation during tracheal morphogenesis in Drosophila. Curr. Biol. 14, 2197–2207 (2004).

    Article  CAS  Google Scholar 

  4. Li, B. X., Satoh, A. K. & Ready, D. F. Myosin V, Rab11, and dRip11 direct apical secretion and cellular morphogenesis in developing Drosophila photoreceptors. J. Cell Biol. 177, 659–669 (2007).

    Article  CAS  Google Scholar 

  5. Oda, H., Uemura, T., Harada, Y., Iwai, Y. & Takeichi, M. A Drosophila homolog of cadherin associated with armadillo and essential for embryonic cell–cell adhesion. Dev. Biol. 165, 716–726 (1994).

    Article  CAS  Google Scholar 

  6. Classen, A. K., Anderson, K. I., Marois, E. & Eaton, S. Hexagonal packing of Drosophila wing epithelial cells by the planar cell polarity pathway. Dev. Cell 9, 805–817 (2005).

    Article  CAS  Google Scholar 

  7. Langevin, J. et al. Drosophila exocyst components Sec5, Sec6, and Sec15 regulate DE-Cadherin trafficking from recycling endosomes to the plasma membrane. Dev. Cell 9, 355–376 (2005).

    Article  Google Scholar 

  8. Lock, J. G. & Stow, J. L. Rab11 in recycling endosomes regulates the sorting and basolateral transport of E-cadherin. Mol. Biol. Cell 16, 1744–1755 (2005).

    Article  CAS  Google Scholar 

  9. Ribeiro, C., Ebner, A. & Affolter, M. In vivo imaging reveals different cellular functions for FGF and Dpp signaling in tracheal branching morphogenesis. Dev. Cell 2, 677–683 (2002).

    Article  CAS  Google Scholar 

  10. Chen, C. K. et al. The transcription factors KNIRPS and KNIRPS RELATED control cell migration and branch morphogenesis during Drosophila tracheal development. Development 125, 4959–4968 (1998).

    CAS  PubMed  Google Scholar 

  11. Shiga, Y., Tanaka-Matakatsu, M. & Hayashi, S. A nuclear GFP/ß-galactosidase fusion protein as a marker for morphogenesis in living Drosophila. Dev. Growth Differ. 38, 99–106 (1996).

    Article  CAS  Google Scholar 

  12. van der Bliek, A. M. & Meyerowitz, E. M. Dynamin-like protein encoded by the Drosophila shibire gene associated with vesicular traffic. Nature 351, 411–414 (1991).

    Article  CAS  Google Scholar 

  13. Moline, M. M., Southern, C. & Bejsovec, A. Directionality of wingless protein transport influences epidermal patterning in the Drosophila embryo. Development 126, 4375–4384 (1999).

    CAS  PubMed  Google Scholar 

  14. Ghabrial, A., Luschnig, S., Metzstein, M. M. & Krasnow, M. A. Branching morphogenesis of the Drosophila tracheal system. Annu. Rev. Cell Dev. Biol. 19, 623–647 (2003).

    Article  CAS  Google Scholar 

  15. Somsel Rodman, J. & Wandinger-Ness, A. Rab GTPases coordinate endocytosis. J. Cell Sci. 113, 183–192 (2000).

    PubMed  Google Scholar 

  16. Entchev, E. V., Schwabedissen, A. & Gonzalez-Gaitan, M. Gradient formation of the TGF-β homolog Dpp. Cell 103, 981–991 (2000).

    Article  CAS  Google Scholar 

  17. Marois, E., Mahmoud, A. & Eaton, S. The endocytic pathway and formation of the Wingless morphogen gradient. Development 133, 307–317 (2006).

    Article  CAS  Google Scholar 

  18. Dollar, G., Struckhoff, E., Michaud, J. & Cohen, R. S. Rab11 polarization of the Drosophila oocyte: a novel link between membrane trafficking, microtubule organization, and oskar mRNA localization and translation. Development 129, 517–526 (2002).

    CAS  PubMed  Google Scholar 

  19. Schonbaum, C. P., Organ, E. L., Qu, S. & Cavener, D. R. The Drosophila melanogaster stranded at second (sas) gene encodes a putative epidermal cell surface receptor required for larval development. Dev. Biol. 151, 431–445 (1992).

    Article  CAS  Google Scholar 

  20. Lippincott-Schwartz, J., Snapp, E. & Kenworthy, A. Studying protein dynamics in living cells. Nature Rev. Mol. Cell Biol. 2, 444–456 (2001).

    Article  CAS  Google Scholar 

  21. Emery, G. et al. Asymmetric Rab 11 endosomes regulate δ recycling and specify cell fate in the Drosophila nervous system. Cell 122, 763–773 (2005).

    Article  CAS  Google Scholar 

  22. Riggs, B. et al. Actin cytoskeleton remodeling during early Drosophila furrow formation requires recycling endosomal components Nuclear-fallout and Rab11. J. Cell Biol. 163, 143–154 (2003).

    Article  CAS  Google Scholar 

  23. Jung, A. C., Ribeiro, C., Michaut, L., Certa, U. & Affolter, M. Polychaetoid/ZO-1 is required for cell specification and rearrangement during Drosophila tracheal morphogenesis. Curr. Biol. 16, 1224–1231 (2006).

    Article  CAS  Google Scholar 

  24. Pacquelet, A. & Rorth, P. Regulatory mechanisms required for DE-cadherin function in cell migration and other types of adhesion. J. Cell Biol. 170, 803–812 (2005).

    Article  CAS  Google Scholar 

  25. Beloussov, L. V., Louchinskaia, N. N. & Stein, A. A. Tension-dependent collective cell movements in the early gastrula ectoderm of Xenopus laevis embryos. Dev. Genes Evol. 210, 92–104 (2000).

    Article  CAS  Google Scholar 

  26. Kuhnlein, R. P. & Schuh, R. Dual function of the region-specific homeotic gene spalt during Drosophila tracheal system development. Development 122, 2215–2223 (1996).

    CAS  Google Scholar 

  27. Jarrett, O., Stow, J. L., Yap, A. S. & Key, B. Dynamin-dependent endocytosis is necessary for convergent-extension movements in Xenopus animal cap explants. Int. J. Dev. Biol. 46, 467–473 (2002).

    CAS  PubMed  Google Scholar 

  28. Kleeff, J., Friess, H., Liao, Q. & Buchler, M. W. Immunohistochemical presentation in non-malignant and malignant Barrett's epithelium. Dis. Esophagus 15, 10–15 (2002).

    Article  CAS  Google Scholar 

  29. Duffy, J. B. GAL4 system in Drosophila: a fly geneticist's Swiss army knife. Genesis 34, 1–15 (2002).

    Article  CAS  Google Scholar 

  30. Cela, C. & Llimargas, M. Egfr is essential for maintaining epithelial integrity during tracheal remodelling in Drosophila. Development 133, 3115–3125 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to many colleagues for sharing reagents. In particular, we thank R. Cohen, S. Eaton, M. González-Gaitán, D. Ready and W. Sullivan for those we used here. We thank S. Araújo, A. Casali, M. Furriols, L. Gervais, I. Greenwald, A. Letizia, E. Martín-Blanco, G. Struhl and J. P. Vincent for comments on the manuscript; N. Martín and R. Méndez for technical assistance; L. Bardia and M. Pons for assistance with confocal microscopy. D.D.S was supported by a Damon Runyon Cancer Research Foundation postdoctoral fellowship (DRG#1840-04). This work was supported by independent grants from the Ministerio de Educación y Ciencia and the Generalitat de Catalunya to J.C. and M.L.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jordi Casanova or Marta Llimargas.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, Supplementary Tables S1, S2, S3 and Supplementary Methods (PDF 6681 kb)

Supplementary Information

Supplementay Movie 1 (MOV 8021 kb)

Supplementary Information

Supplementary Movie 2 (MOV 8790 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shaye, D., Casanova, J. & Llimargas, M. Modulation of intracellular trafficking regulates cell intercalation in the Drosophila trachea. Nat Cell Biol 10, 964–970 (2008). https://doi.org/10.1038/ncb1756

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1756

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing