Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Crystal structure of the human symplekin–Ssu72–CTD phosphopeptide complex

Abstract

Symplekin (Pta1 in yeast) is a scaffold in the large protein complex that is required for 3′-end cleavage and polyadenylation of eukaryotic messenger RNA precursors (pre-mRNAs)1,2,3,4; it also participates in transcription initiation and termination by RNA polymerase II (Pol II)5,6. Symplekin mediates interactions between many different proteins in this machinery1,2,7,8,9, although the molecular basis for its function is not known. Here we report the crystal structure at 2.4 Å resolution of the amino-terminal domain (residues 30–340) of human symplekin in a ternary complex with the Pol II carboxy-terminal domain (CTD) Ser 5 phosphatase Ssu72 (refs 7, 10–17) and a CTD Ser 5 phosphopeptide. The N-terminal domain of symplekin has the ARM or HEAT fold, with seven pairs of antiparallel α-helices arranged in the shape of an arc. The structure of Ssu72 has some similarity to that of low-molecular-mass phosphotyrosine protein phosphatase18,19, although Ssu72 has a unique active-site landscape as well as extra structural features at the C terminus that are important for interaction with symplekin. Ssu72 is bound to the concave face of symplekin, and engineered mutations in this interface can abolish interactions between the two proteins. The CTD peptide is bound in the active site of Ssu72, with the pSer 5-Pro 6 peptide bond in the cis configuration, which contrasts with all other known CTD peptide conformations20,21. Although the active site of Ssu72 is about 25 Å from the interface with symplekin, we found that the symplekin N-terminal domain stimulates Ssu72 CTD phosphatase activity in vitro. Furthermore, the N-terminal domain of symplekin inhibits polyadenylation in vitro, but only when coupled to transcription. Because catalytically active Ssu72 overcomes this inhibition, our results show a role for mammalian Ssu72 in transcription-coupled pre-mRNA 3′-end processing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the human symplekin–Ssu72–CTD phosphopeptide ternary complex.
Figure 2: Recognition of the CTD phosphopeptide by human Ssu72.
Figure 3: Structural and biochemical characterizations of the symplekin–Ssu72 interface.
Figure 4: Functional characterization of the symplekin–Ssu72 interaction.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Data deposits

Atomic coordinates have been deposited at the Protein Data Bank (accession codes 3O2Q, 3O2S, 3O2T, 3ODR and 3ODS).

References

  1. Takagaki, Y. & Manley, J. L. Complex protein interactions within the human polyadenylation machinery identify a novel component. Mol. Cell. Biol. 20, 1515–1525 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhao, J., Kessler, M. M., Helmling, S., O’Connor, J. P. & Moore, C. L. Pta1, a component of yeast CFII, is required for both cleavage and poly(A) addition of mRNA precursor. Mol. Cell. Biol. 19, 7733–7740 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhao, J., Hyman, L. & Moore, C. L. Formation of mRNA 3′ ends in eukaryotes: mechanism, regulation, and interrelationships with other steps in mRNA synthesis. Microbiol. Mol. Biol. Rev. 63, 405–445 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Mandel, C. R., Bai, Y. & Tong, L. Protein factors in pre-mRNA 3′-end processing. Cell. Mol. Life Sci. 65, 1099–1122 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Calvo, O. & Manley, J. L. Strange bedfellows: polyadenylation factors at the promoter. Genes Dev. 17, 1321–1327 (2003)

    Article  CAS  PubMed  Google Scholar 

  6. Moore, M. J. & Proudfoot, N. J. Pre-mRNA processing reaches back to transcription and ahead to translation. Cell 136, 688–700 (2009)

    Article  CAS  PubMed  Google Scholar 

  7. He, X. et al. Functional interactions between the transcription and mRNA 3′ end processing machineries mediated by Ssu72 and Sub1. Genes Dev. 17, 1030–1042 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nedea, E. et al. Organization and function of APT, a subcomplex of the yeast cleavage and polyadenylation factor involved in the formation of mRNA and small nucleolar RNA 3′-ends. J. Biol. Chem. 278, 33000–33010 (2003)

    Article  CAS  PubMed  Google Scholar 

  9. Ghazy, M. A., He, X., Singh, B. N., Hampsey, M. & Moore, C. The essential N terminus of the Pta1 scaffold protein is required for snoRNA transcription termination and Ssu72 function but is dispensible for pre-mRNA 3′-end processing. Mol. Cell. Biol. 29, 2296–2307 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dichtl, B. et al. A role for SSU72 in balancing RNA polymerase II transcription elongation and termination. Mol. Cell 10, 1139–1150 (2002)

    Article  CAS  PubMed  Google Scholar 

  11. Meinhart, A., Silberzahn, T. & Cramer, P. The mRNA transcription/processing factor Ssu72 is a potential tyrosine phosphatase. J. Biol. Chem. 278, 15917–15921 (2003)

    Article  CAS  PubMed  Google Scholar 

  12. Ganem, C. et al. Ssu72 is a phosphatase essential for transcription termination of snoRNAs and specific mRNAs in yeast. EMBO J. 22, 1588–1598 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Krishnamurthy, S., He, X., Reyes-Reyes, M., Moore, C. L. & Hampsey, M. Ssu72 is an RNA polymerase II CTD phosphatase. Mol. Cell 14, 387–394 (2004)

    Article  CAS  PubMed  Google Scholar 

  14. Hausmann, S., Koiwa, H., Krishnamurthy, S., Hampsey, M. & Shuman, S. Different strategies for carboxyl-terminal domain (CTD) recognition by serine 5-specific CTD phosphatases. J. Biol. Chem. 280, 37681–37688 (2005)

    Article  CAS  PubMed  Google Scholar 

  15. St-Pierre, B. et al. Conserved and specific functions of mammalian ssu72. Nucleic Acids Res. 33, 464–477 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Reyes-Reyes, M. & Hampsey, M. Role for the Ssu72 C-terminal domain phosphatase in RNA polymerase II transcription elongation. Mol. Cell. Biol. 27, 926–936 (2007)

    Article  CAS  PubMed  Google Scholar 

  17. Ansari, A. & Hampsey, M. A role for the CPF 3′-end processing machinery in RNAP II-dependent gene looping. Genes Dev. 19, 2969–2978 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Su, X.-D., Taddei, N., Stefani, M., Ramponi, G. & Nordlund, P. The crystal structure of a low-molecular-weight phosphotyrosine protein phosphatase. Nature 370, 575–578 (1994)

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Zhang, M., Van Etten, R. L. & Stauffacher, C. V. Crystal structure of bovine heart phosphotyrosyl phosphatase at 2.2-Å resolution. Biochemistry 33, 11097–11105 (1994)

    Article  CAS  PubMed  Google Scholar 

  20. Meinhart, A., Kamenski, T., Hoeppner, S., Baumli, S. & Cramer, P. A structural perspective of CTD function. Genes Dev. 19, 1401–1415 (2005)

    Article  CAS  PubMed  Google Scholar 

  21. Zhang, Y. et al. Determinants for dephosphorylation of the RNA polymerase II C-terminal domain by Scp1. Mol. Cell 24, 759–770 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kennedy, S. A. et al. Crystal structure of the HEAT domain from the pre-mRNA processing factor symplekin. J. Mol. Biol. 392, 115–128 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Xu, Y.-X., Hirose, Y., Zhou, X. Z., Lu, K. P. & Manley, J. L. Pin1 modulates the structure and function of human RNA polymerase II. Genes Dev. 17, 2765–2776 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Krishnamurthy, S., Ghazy, M. A., Moore, C. & Hampsey, M. Functional interaction of the Ess1 prolyl isomerase with components of the RNA polymerase II initiation and termination machineries. Mol. Cell. Biol. 29, 2925–2934 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Singh, N. et al. The Ess1 prolyl isomerase is required for transcription termination of small noncoding RNAs via the Nrd1 pathway. Mol. Cell 36, 255–266 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hirose, Y. & Manley, J. L. RNA polymerase II is an essential mRNA polyadenylation factor. Nature 395, 93–96 (1998)

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Rozenblatt-Rosen, O. et al. The tumor suppressor Cdc73 functionally associates with CPSF and CstF 3′ mRNA processing factors. Proc. Natl Acad. Sci. USA 106, 755–760 (2009)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shi, Y. et al. Molecular architecture of the human pre-mRNA 3′ processing complex. Mol. Cell 33, 365–376 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Takagaki, Y., Ryner, L. C. & Manley, J. L. Separation and characterization of a poly(A) polymerase and a cleavage/specificity factor required for pre-mRNA polyadenylation. Cell 52, 731–742 (1988)

    Article  CAS  PubMed  Google Scholar 

  30. McCracken, S. et al. The C-terminal domain of RNA polymerase II couples mRNA processing to transcription. Nature 385, 357–361 (1997)

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Hendrickson, W. A., Horton, J. R. & LeMaster, D. M. Selenomethionyl proteins produced for analysis by multiwavelength anomalous diffraction (MAD): a vehicle for direct determination of three-dimensional structure. EMBO J. 9, 1665–1672 (1990)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hendrickson, W. A. Determination of macromolecular structures from anomalous diffraction of synchrotron radiation. Science 254, 51–58 (1991)

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)

    Article  CAS  PubMed  Google Scholar 

  34. Weeks, C. M. & Miller, R. The design and implementation of SnB v2.0. J. Appl. Cryst. 32, 120–124 (1999)

    Article  CAS  Google Scholar 

  35. Terwilliger, T. C. SOLVE and RESOLVE: automated structure solution and density modification. Methods Enzymol. 374, 22–37 (2003)

    Article  CAS  PubMed  Google Scholar 

  36. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991)

    Article  PubMed  Google Scholar 

  37. Emsley, P. & Cowtan, K. D. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004)

    Article  PubMed  Google Scholar 

  38. Brunger, A. T. et al. Crystallography & NMR System: A new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998)

    Article  CAS  PubMed  Google Scholar 

  39. Murshudov, G. N., Vagin, A. A. & Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997)

    Article  CAS  PubMed  Google Scholar 

  40. Jogl, G., Tao, X., Xu, Y. & Tong, L. COMO: A program for combined molecular replacement. Acta Crystallogr. D Biol. Crystallogr. 57, 1127–1134 (2001)

    Article  CAS  PubMed  Google Scholar 

  41. Hirose, Y. & Manley, J. L. RNA polymerase II is an essential mRNA polyadenylation factor. Nature 395, 93–96 (1998)

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Chapman, R. D. et al. Transcribing RNA polymerase II is phosphorylated at CTD residue serine-7. Science 318, 1780–1782 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank F. Forouhar and J. Seetharaman for help with data collection; T. Auperin for initial experiments with symplekin; R. Abramowitz and J. Schwanof for setting up the X4C beamline; S. Myers for setting up the X29A beamline at the National Synchrotron Light Source; M. Heidemann and D. Eick for providing the 3E10 antibody; N. Rao and C. Logan for HeLa nuclear extract and help with in vitro assays; and J. Decatur for characterizing the phosphopeptide by NMR. This research is supported in part by grants from the National Institutes of Health to L.T. (GM077175) and J.L.M. (GM028983).

Author information

Authors and Affiliations

Authors

Contributions

K.X., S.X., T.K. and M.M.B. performed protein expression, purification and crystallization experiments. K.X., S.X. and L.T. conducted crystallographic data collection, structure determination and refinement. T.N. and K.X. performed polyadenylation experiments. K.X. performed Ssu72 phosphatase assays. All authors commented on the manuscript. L.T. and J.L.M. designed the experiments, analysed the data and wrote the paper.

Corresponding author

Correspondence to Liang Tong.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text, Supplementary Table 1 and Supplementary Figures 1-11 with legends. (PDF 3949 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiang, K., Nagaike, T., Xiang, S. et al. Crystal structure of the human symplekin–Ssu72–CTD phosphopeptide complex. Nature 467, 729–733 (2010). https://doi.org/10.1038/nature09391

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09391

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing