Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute Leukemias

Clonal variegation and dynamic competition of leukemia-initiating cells in infant acute lymphoblastic leukemia with MLL rearrangement

Abstract

Distinct from other forms of acute lymphoblastic leukemia (ALL), infant ALL with mixed lineage leukemia (MLL) gene rearrangement, the most common leukemia occurring within the first year of life, might arise without the need for cooperating genetic lesions. Through Ig/TCR rearrangement analysis of MLL-AF4+ infant ALL at diagnosis and xenograft leukemias from mice transplanted with the same diagnostic samples, we established that MLL-AF4+ infant ALL is composed of a branching subclonal architecture already at diagnosis, frequently driven by an Ig/TCR-rearranged founder clone. Some MLL-AF4+ clones appear to be largely quiescent at diagnosis but can reactivate and dominate when serially transplanted into immunodeficient mice, whereas other dominant clones at diagnosis can become more quiescent, suggesting a dynamic competition between actively proliferating and quiescent subclones. Investigation of paired diagnostic and relapse samples suggested that relapses often occur from subclones already present but more quiescent at diagnosis. Copy-number alterations identified at relapse might contribute to the activation and expansion of previously quiescent subclones. Finally, each of the identified subclones is able to contribute to the diverse phenotypic pool of MLL-AF4+ leukemia-propagating cells. Unraveling of the subclonal architecture and dynamics in MLL+ infant ALL may provide possible explanations for the therapy resistance and frequent relapses observed in this group of poor prognosis ALL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Anderson K, Lutz C, van Delft FW, Bateman CM, Guo Y, Colman SM et al. Genetic variegation of clonal architecture and propagating cells in leukaemia. Nature 2011; 469: 356–361.

    Article  CAS  PubMed  Google Scholar 

  2. Notta F, Mullighan CG, Wang JC, Poeppl A, Doulatov S, Phillips LA et al. Evolution of human BCR-ABL1 lymphoblastic leukaemia-initiating cells. Nature 2011; 469: 362–367.

    Article  CAS  PubMed  Google Scholar 

  3. Schmitz M, Breithaupt P, Scheidegger N, Cario G, Bonapace L, Meissner B et al. Xenografts of highly resistant leukemia recapitulate the clonal composition of the leukemogenic compartment. Blood 2011; 118: 1854–1864.

    Article  CAS  PubMed  Google Scholar 

  4. Mullighan CG, Phillips LA, Su X, Ma J, Miller CB, Shurtleff SA et al. Genomic analysis of the clonal origins of relapsed acute lymphoblastic leukemia. Science 2008; 322: 1377–1380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Clappier E, Gerby B, Sigaux F, Delord M, Touzri F, Hernandez L et al. Clonal selection in xenografted human T cell acute lymphoblastic leukemia recapitulates gain of malignancy at relapse. J Exp Med 2011; 208: 653–661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Greaves M . Darwin and evolutionary tales in leukemia. The Ham-Wasserman Lecture. Hematol Am Soc Hematol Educ Program 2009; 1: 3–12.

    Article  Google Scholar 

  7. Gawad C, Pepin F, Carlton VE, Klinger M, Logan AC, Miklos DB et al. Massive evolution of the immunoglobulin heavy chain locus in children with B precursor acute lymphoblastic leukemia. Blood 2012; 120: 4407–4417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Landau DA, Carter SL, Getz G, Wu CJ . Clonal evolution in hematological malignancies and therapeutic implications. Leukemia 2014; 28: 34–43.

    Article  CAS  PubMed  Google Scholar 

  9. Keats JJ, Chesi M, Egan JB, Garbitt VM, Palmer SE, Braggio E et al. Clonal competition with alternating dominance in multiple myeloma. Blood 2012; 120: 1067–1076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kreso A, O'Brien CA, van Galen P, Gan OI, Notta F, Brown AM et al. Variable clonal repopulation dynamics influence chemotherapy response in colorectal cancer. Science 2013; 339: 543–548.

    Article  CAS  PubMed  Google Scholar 

  11. Biondi A, Cimino G, Pieters R, Pui CH . Biological and therapeutic aspects of infant leukemia. Blood 2000; 96: 24–33.

    CAS  PubMed  Google Scholar 

  12. Greaves MF, Wiemels J . Origins of chromosome translocations in childhood leukaemia. Nat Rev Cancer 2003; 3: 639–649.

    Article  CAS  PubMed  Google Scholar 

  13. Greaves MF, Maia AT, Wiemels JL, Ford AM . Leukemia in twins: lessons in natural history. Blood 2003; 102: 2321–2333.

    Article  CAS  PubMed  Google Scholar 

  14. Bardini M, Spinelli R, Bungaro S, Mangano E, Corral L, Cifola I et al. DNA copy-number abnormalities do not occur in infant ALL with t(4;11)/MLL-AF4. Leukemia 2010; 24: 169–176.

    Article  CAS  PubMed  Google Scholar 

  15. Bardini M, Galbiati M, Lettieri A, Bungaro S, Gorletta TA, Biondi A et al. Implementation of array based whole-genome high-resolution technologies confirms the absence of secondary copy-number alterations in MLL-AF4-positive infant ALL patients. Leukemia 2011; 25: 175–178.

    Article  CAS  PubMed  Google Scholar 

  16. Mullighan CG, Goorha S, Radtke I, Miller CB, Coustan-Smith E, Dalton JD et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 2007; 446: 758–764.

    Article  CAS  PubMed  Google Scholar 

  17. Dobbins SE, Sherborne AL, Ma YP, Bardini M, Biondi A, Cazzaniga G et al. The silent mutational landscape of infant MLL-AF4 pro-B acute lymphoblastic leukemia. Genes Chromosomes Cancer 2013; 52: 954–960.

    Article  CAS  PubMed  Google Scholar 

  18. Magee JA, Piskounova E, Morrison SJ . Cancer stem cells: impact, heterogeneity, and uncertainty. Cancer Cell 2012; 21: 283–296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kelly PN, Dakic A, Adams JM, Nutt SL, Strasser A . Tumor growth need not be driven by rare cancer stem cells. Science 2007; 317: 337.

    Article  CAS  PubMed  Google Scholar 

  20. Quintana E, Shackleton M, Sabel MS, Fullen DR, Johnson TM, Morrison SJ . Efficient tumour formation by single human melanoma cells. Nature 2008; 456: 593–598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. le Viseur C, Hotfilder M, Bomken S, Wilson K, Rottgers S, Schrauder A et al. In childhood acute lymphoblastic leukemia, blasts at different stages of immunophenotypic maturation have stem cell properties. Cancer Cell 2008; 14: 47–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Taussig DC, Miraki-Moud F, Anjos-Afonso F, Pearce DJ, Allen K, Ridler C et al. Anti-CD38 antibody-mediated clearance of human repopulating cells masks the heterogeneity of leukemia-initiating cells. Blood 2008; 112: 568–575.

    Article  CAS  PubMed  Google Scholar 

  23. Kong Y, Yoshida S, Saito Y, Doi T, Nagatoshi Y, Fukata M et al. CD34+CD38+CD19+ as well as CD34+CD38-CD19+ cells are leukemia-initiating cells with self-renewal capacity in human B-precursor ALL. Leukemia 2008; 22: 1207–1213.

    Article  CAS  PubMed  Google Scholar 

  24. Pieters R, Schrappe M, De Lorenzo P, Hann I, De Rossi G, Felice M et al. A treatment protocol for infants younger than 1 year with acute lymphoblastic leukaemia (Interfant-99): an observational study and a multicentre randomised trial. Lancet 2007; 370: 240–250.

    Article  CAS  PubMed  Google Scholar 

  25. Castor A, Nilsson L, Astrand-Grundstrom I, Buitenhuis M, Ramirez C, Anderson K et al. Distinct patterns of hematopoietic stem cell involvement in acute lymphoblastic leukemia. Nat Med 2005; 11: 630–637.

    Article  CAS  PubMed  Google Scholar 

  26. Felix CA, Jones DH . Panhandle PCR: a technical advance to amplify MLL genomic translocation breakpoints. Leukemia 1998; 12: 976–981.

    Article  CAS  PubMed  Google Scholar 

  27. van der Velden VH, van Dongen JJ . MRD detection in acute lymphoblastic leukemia patients using Ig/TCR gene rearrangements as targets for real-time quantitative PCR. Methods Mol Biol 2009; 538: 115–150.

    Article  CAS  PubMed  Google Scholar 

  28. van der Velden VH, Panzer-Grumayer ER, Cazzaniga G, Flohr T, Sutton R, Schrauder A et al. Optimization of PCR-based minimal residual disease diagnostics for childhood acute lymphoblastic leukemia in a multi-center setting. Leukemia 2007; 21: 706–713.

    Article  CAS  PubMed  Google Scholar 

  29. Flohr T, Schrauder A, Cazzaniga G, Panzer-Grumayer R, van der Velden V, Fischer S et al. Minimal residual disease-directed risk stratification using real-time quantitative PCR analysis of immunoglobulin and T-cell receptor gene rearrangements in the international multicenter trial AIEOP-BFM ALL 2000 for childhood acute lymphoblastic leukemia. Leukemia 2008; 22: 771–782.

    Article  CAS  PubMed  Google Scholar 

  30. Conter V, Bartram CR, Valsecchi MG, Schrauder A, Panzer-Grumayer R, Moricke A et al. Molecular response to treatment redefines all prognostic factors in children and adolescents with B-cell precursor acute lymphoblastic leukemia: results in 3184 patients of the AIEOP-BFM ALL 2000 study. Blood 2010; 115: 3206–3214.

    Article  CAS  PubMed  Google Scholar 

  31. Jansen MW, Corral L, van der Velden VH, Panzer-Grumayer R, Schrappe M, Schrauder A et al. Immunobiological diversity in infant acute lymphoblastic leukemia is related to the occurrence and type of MLL gene rearrangement. Leukemia 2007; 21: 633–641.

    Article  CAS  PubMed  Google Scholar 

  32. Van der Velden VH, Corral L, Valsecchi MG, Jansen MW, De Lorenzo P, Cazzaniga G et al. Prognostic significance of minimal residual disease in infants with acute lymphoblastic leukemia treated within the Interfant-99 protocol. Leukemia 2009; 23: 1073–1079.

    Article  CAS  PubMed  Google Scholar 

  33. Behm FG, Smith FO, Raimondi SC, Pui CH, Bernstein ID . Human homologue of the rat chondroitin sulfate proteoglycan, NG2, detected by monoclonal antibody 7.1, identifies childhood acute lymphoblastic leukemias with t(4;11)(q21;q23) or t(11;19)(q23;p13) and MLL gene rearrangements. Blood 1996; 87: 1134–1139.

    CAS  PubMed  Google Scholar 

  34. Schwartz S, Rieder H, Schlager B, Burmeister T, Fischer L, Thiel E . Expression of the human homologue of rat NG2 in adult acute lymphoblastic leukemia: close association with MLL rearrangement and a CD10(−)/CD24(−)/CD65s(+)/CD15(+) B-cell phenotype. Leukemia 2003; 17: 1589–1595.

    Article  CAS  PubMed  Google Scholar 

  35. Smith FO, Rauch C, Williams DE, March CJ, Arthur D, Hilden J et al. The human homologue of rat NG2, a chondroitin sulfate proteoglycan, is not expressed on the cell surface of normal hematopoietic cells but is expressed by acute myeloid leukemia blasts from poor-prognosis patients with abnormalities of chromosome band 11q23. Blood 1996; 87: 1123–1133.

    CAS  PubMed  Google Scholar 

  36. Wuchter C, Harbott J, Schoch C, Schnittger S, Borkhardt A, Karawajew L et al. Detection of acute leukemia cells with mixed lineage leukemia (MLL) gene rearrangements by flow cytometry using monoclonal antibody 7.1. Leukemia 2000; 14: 1232–1238.

    Article  CAS  PubMed  Google Scholar 

  37. Guenechea G, Gan OI, Dorrell C, Dick JE . Distinct classes of human stem cells that differ in proliferative and self-renewal potential. Nat Immunol 2001; 2: 75–82.

    Article  CAS  PubMed  Google Scholar 

  38. Barabe F, Kennedy JA, Hope KJ, Dick JE . Modeling the initiation and progression of human acute leukemia in mice. Science 2007; 316: 600–604.

    Article  CAS  PubMed  Google Scholar 

  39. Wei J, Wunderlich M, Fox C, Alvarez S, Cigudosa JC, Wilhelm JS et al. Microenvironment determines lineage fate in a human model of MLL-AF9 leukemia. Cancer Cell 2008; 13: 483–495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Marks DI, Moorman AV, Chilton L, Paietta E, Enshaie A, DeWald G et al. The clinical characteristics, therapy and outcome of 85 adults with acute lymphoblastic leukemia and t(4;11)(q21;q23)/MLL-AFF1 prospectively treated in the UKALLXII/ECOG2993 trial. Haematologica 2013; 98: 945–952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Eaves CJ . Cancer stem cells: Here, there, everywhere? Nature 2008; 456: 581–582.

    Article  CAS  PubMed  Google Scholar 

  42. Neudenberger J, Hotfilder M, Rosemann A, Langebrake C, Reinhardt D, Pieters R et al. Lack of expression of the chondroitin sulphate proteoglycan neuron–glial antigen 2 on candidate stem cell populations in paediatric acute myeloid leukaemia/abn(11q23) and acute lymphoblastic leukaemia/t(4;11). Br J Haematol 2006; 133: 337–344.

    Article  CAS  PubMed  Google Scholar 

  43. Cox CV, Blair A . A primitive cell origin for B-cell precursor ALL? Stem Cell Rev 2005; 1: 189–196.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A Castor for teaching the BM aspiration procedure, M Galbiati and A Lettieri for assistance in cytogenetic analysis and C Palmi and G Longinotti for counseling on IKZF1 deletion. We are grateful to Prof Mel Greaves for having inspired this study, Dr R Pieters responsible for the ‘Interfant Task Force’, Dr J van Dongen for fruitful discussion on clonal analysis in infant ALL, and all the many other clinicians involved. This work was supported by grants from the Medical Research Council, EuroCancerStemCell (6th framework EU integrated project) and Hemato-Linnè (Swedish Research Council) to SEJ; Associazione Italiana per la Ricerca sul Cancro (AIRC) to GC and AB; Fondo per gli Investimenti della Ricerca di Base (Programma ‘Futuro in Ricerca’ FIRB) to MB and AB, Leukemia and Lymphoma Society fellowship to PW. Fondazione Cariplo, Fondazione Tettamanti-Monza and Fondazione Città della Speranza-Padova.

Author contributions

SEJ and GC designed and supervised research and interpreted data; MB performed research and interpreted data, with help from PSW. MB and SEJ wrote the paper, with input from GC and PSW. LC contributed to the clonal analysis, LW provided assistance with mouse experiments, ZM performed FACS sorting and SL helped to interpret the FACS data. LLN cloned the MLL breakpoint, GB is responsible of the AIEOP cell bank and AB provided intellectual input on study design, results and interpretations. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G Cazzaniga or S E W Jacobsen.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bardini, M., Woll, P., Corral, L. et al. Clonal variegation and dynamic competition of leukemia-initiating cells in infant acute lymphoblastic leukemia with MLL rearrangement. Leukemia 29, 38–50 (2015). https://doi.org/10.1038/leu.2014.154

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2014.154

This article is cited by

Search

Quick links