Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Adeno-associated virus-mediated gene delivery into the scala media of the normal and deafened adult mouse ear

Abstract

Murine models are ideal for studying cochlear gene transfer, as many hearing loss-related mutations have been discovered and mapped within the mouse genome. However, because of the small size and delicate nature, the membranous labyrinth of the mouse is a challenging target for the delivery of viral vectors. To minimize injection trauma, we developed a procedure for the controlled release of adeno-associated viruses (AAVs) into the scala media of adult mice. This procedure poses minimal risk of injury to structures of the cochlea and middle ear, and allows for near-complete preservation of low and middle frequency hearing. In this study, transduction efficiency and cellular specificity of AAV vectors (serotypes 1, 2, 5, 6 and 8) were investigated in normal and drug-deafened ears. Using the cytomegalovirus promoter to drive gene expression, a variety of cell types were transduced successfully, including sensory hair cells and supporting cells, as well as cells in the auditory nerve and spiral ligament. Among all five serotypes, inner hair cells were the most effectively transduced cochlear cell type. All five serotypes of AAV vectors transduced cells of the auditory nerve, though serotype 8 was the most efficient vector for transduction. Our findings indicate that efficient AAV inoculation (via the scala media) can be performed in adult mouse ears, with hearing preservation a realistic goal. The procedure we describe may also have applications for intra-endolymphatic drug delivery in many mouse models of human deafness.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Roberson DW, Rubel EW . Cell division in the gerbil cochlea after acoustic trauma. Am J Otol 1994; 15: 28–34.

    CAS  PubMed  Google Scholar 

  2. Yamashita H, Shimogori H, Sugahara K, Takahashi M . Cell proliferation in spiral ligament of mouse cochlea damaged by dihydrostreptomycin sulfate. Acta Otolaryngol 1999; 119: 322–325.

    Article  CAS  PubMed  Google Scholar 

  3. Lang H, Schulte BA, Schmiedt RA . Effects of chronic furosemide treatment and age on cell division in the adult gerbil inner ear. J Assoc Res Otolaryngol 2003; 4: 164–175.

    Article  CAS  PubMed  Google Scholar 

  4. Brignull HR, Raible DW, Stone JS . Feathers and fins: non-mammalian models for hair cell regeneration. Brain Res 2009; 1277: 12–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Groves AK . The challenge of hair cell regeneration. Exp Biol Med (Maywood) 2010; 235: 434–446.

    Article  CAS  Google Scholar 

  6. Izumikawa M, Minoda R, Kawamoto K, Abrashkin KA, Swiderski DL, Dolan DF et al. Auditory hair cell replacement and hearing improvement by Atoh1 gene therapy in deaf mammals. Nat Med 2005; 11: 271–276.

    Article  CAS  PubMed  Google Scholar 

  7. Staecker H, Praetorius M, Baker K, Brough DE . Vestibular hair cell regeneration and restoration of balance function induced by math1 gene transfer. Otol Neurotol 2007; 28: 223–231.

    Article  PubMed  Google Scholar 

  8. Gubbels SP, Woessner DW, Mitchell JC, Ricci AJ, Brigande JV . Functional auditory hair cells produced in the mammalian cochlea by in utero gene transfer. Nature 2008; 455: 537–541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lalwani AK, Walsh BJ, Reilly PG, Muzyczka N, Mhatre AN . Development of in vivo gene therapy for hearing disorders: introduction of adeno-associated virus into the cochlea of the guinea pig. Gene Therapy 1996; 3: 588–592.

    CAS  PubMed  Google Scholar 

  10. Dazert S, Battaglia A, Ryan AF . Transfection of neo-natal rat cochlear cells in vitro with an adenovirus vector. Int J Dev Neurosci 1997; 15: 595–600.

    Article  CAS  PubMed  Google Scholar 

  11. Lalwani AK, Walsh BJ, Carvalho GJ, Muzyczka N, Mhatre AN . Expression of adeno-associated virus integrated transgene within the mammalian vestibular organs. Am J Otol 1998; 19: 390–395.

    CAS  PubMed  Google Scholar 

  12. Kiernan AE, Fekete DM . In vivo gene transfer into the embryonic inner ear using retroviral vectors. Audiol Neurootol 1997; 2: 12–24.

    Article  CAS  PubMed  Google Scholar 

  13. Weiss MA, Frisancho JC, Roessler BJ, Raphael Y . Viral-mediated gene transfer in the cochlea. Int J Dev Neurosci 1997; 15: 577–583.

    Article  CAS  PubMed  Google Scholar 

  14. Lalwani A, Walsh B, Reilly P, Carvalho G, Zolotukhin S, Muzyczka N et al. Long-term in vivo cochlear transgene expression mediated by recombinant adeno-associated virus. Gene Therapy 1998; 5: 277–281.

    Article  CAS  PubMed  Google Scholar 

  15. Derby ML, Sena-Esteves M, Breakefield XO, Corey DP . Gene transfer into the mammalian inner ear using HSV-1 and vaccinia virus vectors. Hear Res 1999; 134: 1–8.

    Article  CAS  PubMed  Google Scholar 

  16. Holt JR, John DC, Wang S, Chen ZY, Dunn RI, Marban E et al. Functional expression of exogenous proteins in mammalian sensory hair cells infected with adenoviral vectors. J Neurophysiol 1999; 81: 1881–1888.

    Article  CAS  PubMed  Google Scholar 

  17. Van de Water TR, Staecker H, Halterman MW, Federoff HJ . Gene therapy in the inner ear. Mechanisms and clinical implications. Ann N Y Acad Sci 1999; 884: 345–360.

    Article  CAS  PubMed  Google Scholar 

  18. Yamasoba T, Yagi M, Roessler BJ, Miller JM, Raphael Y . Inner ear transgene expression after adenoviral vector inoculation in the endolymphatic sac. Hum Gene Ther 1999; 10: 769–774.

    Article  CAS  PubMed  Google Scholar 

  19. Chen X, Frisina RD, Bowers WJ, Frisina DR, Federoff HJ . HSV amplicon-mediated neurotrophin-3 expression protects murine spiral ganglion neurons from cisplatin-induced damage. Mol Ther 2001; 3: 958–963.

    Article  CAS  PubMed  Google Scholar 

  20. Jero J, Mhatre AN, Tsend CJ, Stern RE, Coling DE, Goldstein JA et al. Cochlear gene delivery through an intact round window membrane in mouse. Hum Gene Ther 2001; 12: 539–548.

    Article  CAS  PubMed  Google Scholar 

  21. Kawamoto K, Oh SH, Kanzaki S, Brown N, Raphael Y . The functional and structural outcome of inner ear gene transfer via the vestibular and cochlear fluids in mice. Mol Ther 2001; 4: 575–585.

    Article  CAS  PubMed  Google Scholar 

  22. Staecker H, Li D, O’Malley Jr BW, Van de Water TR . Gene expression in the mammalian cochlea: a study of multiple vector systems. Acta Otolarngol 2001; 121: 157–163.

    Article  CAS  Google Scholar 

  23. Luebke AE, Foster PK, Muller CD, Peel AL . Cochlear function and transgene expression in the guinea pig cochlea, using adenovirus- and adeno-associated virus-directed gene transfer. Hum Gene Ther 2001; 12: 773–781.

    Article  CAS  PubMed  Google Scholar 

  24. Ishimoto S, Kawamoto K, Kanzaki S, Raphael Y . Gene transfer into supporting cells of the organ of Corti. Hear Res 2002; 173: 187–197.

    Article  CAS  PubMed  Google Scholar 

  25. Liu Y, Okada T, Sheykholeslami K, Shimazaki K, Nomoto T, Muramatsu S et al. Specific and efficient transduction of cochlear inner hair cells with recombinant adeno-associated virus type 3 vector. Mol Ther 2005; 12: 725–733.

    Article  CAS  PubMed  Google Scholar 

  26. Stone IM, Lurie DI, Kelley MW, Poulsen DJ . Adeno-associated virus-mediated gene transfer to hair cells and support cells of the murine cochlea. Mol Ther 2005; 11: 843–848.

    Article  CAS  PubMed  Google Scholar 

  27. Bedrosian JC, Gratton MA, Brigande JV, Tang W, Landau J et al. In vivo delivery of recombinant viruses to the fetal murine cochlea: transduction characteristics and long-term effects on auditory function. Mol Ther 2006; 14: 328–335.

    Article  CAS  PubMed  Google Scholar 

  28. Cooper LB, Chan DK, Roediger FC, Shaffer BR, Fraser JF, Musatov S et al. AAV-mediated delivery of the caspase inhibitor XIAP protects against cisplatin ototoxicity. Otol Neurotol 2006; 27: 484–490.

    PubMed  Google Scholar 

  29. Kesser BW, Hashisaki GT, Fletcher K, Eppard H, Holt JR . An in vitro model system to study gene therapy in the human inner ear. Gene Therapy 2007; 14: 1121–1131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Venail F, Wang J, Ruel J, Ballana E, Rebillard G, Eybalin M et al. Coxsackie adenovirus receptor and alpha nu beta3/alpha nu beta5 integrins in adenovirus gene transfer of rat cochlea. Gene Therapy 2007; 14: 30–37.

    Article  CAS  PubMed  Google Scholar 

  31. Wenzel GI, Xia A, Funk E, Evans MB, Palmer DJ, Ng P et al. Helper-dependent adenovirus-mediated gene transfer into the adult mouse cochlea. Otol Neurotol 2007; 28: 1100–1108.

    Article  PubMed  Google Scholar 

  32. Iizuka T, Kanzaki S, Mochizuki H, Inoshita A, Narui Y, Furukawa M et al. Noninvasive in vivo delivery of transgene via adeno-associated virus into supporting cells of the neonatal mouse cochlea. Hum Gene Ther 2008; 19: 384–390.

    Article  CAS  PubMed  Google Scholar 

  33. Luebke A, Rova C, Doersten P, Poulsen D . Adenoviral and AAV-Mediated gene transfer to the inner ear: role of serotype, promoter, and viral load on in vivo and in vitro infection efficiencies. In: Ryan A (ed). Gene Therapy of Cochlear Deafness, vol. 66, Karger: Basel, 2009, pp 87–98.

    Chapter  Google Scholar 

  34. Kesser B, Lalwani A . Gene therapy and stem cell transplantation: strategies for hearing restoration. In: Ryan A (ed). Gene Therapy of Cochlear Deafness, vol. 66, Karger: Basel, 2009, pp 64–86.

    Chapter  Google Scholar 

  35. Husseman J, Raphael Y . Gene therapy in the inner ear using adenovirus vectors. In: Ryan A (ed). Gene Therapy of Cochlear Deafness, vol. 66, Karger: Basel, 2009, pp 37–51.

    Chapter  Google Scholar 

  36. Ryan A, Mullen L, Doherty J . Cellular targeting for cochlear gene therapy. In: Ryan A (ed). Gene Therapy of Cochlear Deafness, vol. 66, Karger: Basel, 2009, pp 99–115.

    Chapter  Google Scholar 

  37. Shibata SB, Di Pasquale G, Cortez SR, Chiorini JA, Raphael Y . Gene transfer using bovine adeno-associated virus in the guinea pig cochlea. Gene Therapy 2009; 16: 990–997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hankenson FC, Wathen AB, Eaton KA, Miyazawa T, Swiderski DL, Raphael Y . Guinea pig adenovirus infection does not inhibit cochlear transfection with human adenoviral vectors in a model of hearing loss. Comp Med 2010; 60: 130–135.

    PubMed  PubMed Central  Google Scholar 

  39. Praetorius M, Brough DE, Hsu C, Plinkert PK, Pfannenstiel SC, Staecker H . Adenoviral vectors for improved gene delivery to the inner ear. Hear Res 2009; 248: 31–38.

    Article  CAS  PubMed  Google Scholar 

  40. Praetorius M, Hsu C, Baker K, Brough DE, Plinkert P, Staecker H . Adenovector-mediated hair cell regeneration is affected by promoter type. Acta Otolaryngol 2010; 130: 215–222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Taura A, Taura K, Choung YH, Masuda M, Pak K, Chavez E et al. Histone deacetylase inhibition enhances adenoviral vector transduction in inner ear tissue. Neuroscience 2010; 66: 1185–1193.

    Article  Google Scholar 

  42. Luebke AE, Steiger JD, Hodges BL, Amalfitano A . A modified adenovirus can transfect cochlear hair cells in vivo without compromising cochlear function. Gene Therapy 2001; 8: 789–794.

    Article  CAS  PubMed  Google Scholar 

  43. Liu Y, Okada T, Nomoto T, Ke X, Kume A, Ozawa K et al. Promoter effects of adeno-associated viral vector for transgene expression in the cochlea in vivo. Exp Mol Med 2007; 39: 170–175.

    Article  CAS  PubMed  Google Scholar 

  44. Oesterle EC, Campbell S, Taylor RR, Forge A, Hume CR . Sox2 and Jagged1 expression in normal and drug-damaged adult mouse inner ear. J Assoc Res Otolaryngol 2008; 9: 65–89.

    Article  PubMed  Google Scholar 

  45. Taylor RR, Nevill G, Forge A . Rapid hair cell loss: a mouse model for cochlear lesions. J Assoc Res Otolaryngol 2008; 9: 44–64.

    Article  PubMed  Google Scholar 

  46. Oesterle EC, Campbell S . Supporting cell characteristics in long-deafened aged mouse ears. J Assoc Res Otolaryngol 2009; 10: 525–544.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Thorne M, Salt AN, DeMott JE, Henson MM, Henson Jr OW, Gewalt SL . Cochlear fluid space dimensions for six species derived from reconstructions of three-dimensional magnetic resonance images. Laryngoscope 1999; 109: 1661–1668.

    Article  CAS  PubMed  Google Scholar 

  48. Chen Z, Mikulec AA, McKenna MJ, Sewell WF, Kujawa SG . A method for intracochlear drug delivery in the mouse. Neurosci Methods 2006; 150: 67–73.

    Article  CAS  Google Scholar 

  49. Borkholder DA, Zhu X, Hyatt BT, Archilla AS, Livingston WJ, Frisina RD . Murine intracochlear drug delivery: reducing concentration gradients within the cochlea. Hear Res 2010; 268: 2–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lang H, Schulte BA, Schmiedt RA . Endocochlear potentials and compound action potential recovery functions in the C57BL/6J mouse. Hear Res 2002; 172: 118–126.

    Article  CAS  PubMed  Google Scholar 

  51. Hester ME, Foust KD, Kaspar RW, Kaspar BK . AAV as a gene transfer vector for the treatment of neurological disorders: novel treatment thoughts for ALS. Curr Gene Ther 2009; 9: 428–433.

    Article  CAS  PubMed  Google Scholar 

  52. Summerford C, Samulski RJ . Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions. J Virol 1998; 72: 1438–1445.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Summerford C, Bartlett JS, Samulski RJ . AlphaVbeta5 integrin: a co-receptor for adeno-associated virus type 2 infection. Nat Med 1999; 5: 78–82.

    Article  CAS  PubMed  Google Scholar 

  54. Akache B, Grimm D, Pandey K, Yant SR, Xu H, Kay MA . The 37/67-kilodalton laminin receptor is a receptor for adeno-associated virus serotypes 8, 2, 3, and 9. J Virol 2006; 80: 9831–9836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Negishi A, Chen J, McCarty DM, Samulski RJ, Liu J, Superfine R . Analysis of the interaction between adeno-associated virus and heparan sulfate using atomic force microscopy. Glycobiology 2004; 14: 969–977.

    Article  CAS  PubMed  Google Scholar 

  56. Spicer SS, Schulte BA . The fine structure of spiral ligament cells relates to ion return to the stria and varies with place-frequency. Hear Res 1996; 100: 80–100.

    Article  CAS  PubMed  Google Scholar 

  57. Steel KP . Perspectives: biomedicine. The benefits of recycling. Science 1999; 285: 1363–1364.

    Article  CAS  PubMed  Google Scholar 

  58. Minowa O, Ikeda K, Sugitani Y, Oshima T, Nakai S, Katori Y et al. Altered cochlear fibrocytes in a mouse model of DFN3 nonsyndromic deafness. Science 1999; 285: 1408–1411.

    Article  CAS  PubMed  Google Scholar 

  59. Shibata SB, Cortez SR, Beyer LA, Wiler JA, Di Polo A, Pfingst BE et al. Transgenic BDNF induces nerve fiber regrowth into the auditory epithelium in deaf cochleae. Exp Neurol 2010; 223: 464–472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Auricchio A, O’Connor E, Hildinger M, Wilson JM . A single-step affinity column for purification of serotype-5 based adeno-associated viral vectors. Mol Ther 2001; 4: 372–374.

    Article  CAS  PubMed  Google Scholar 

  61. Lang H, Schulte BA, Zhou D, Smythe N, Spicer SS, Schmiedt RA . Nuclear factor kappaB deficiency is associated with auditory nerve degeneration and increased noise-induced hearing loss. J Neurosci 2006; 26: 3541–3550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC . Green fluorescent protein as a marker for gene expression. Science 1994; 263: 802–805.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Vinu Jyothi for her assistance in ototoxic drug exposure and ABR measurements; Manna Li, Juhong Zhu, Nancy Smythe and James Nicholson for their help with histological observations; Bradley A Schulte and Richard A Schmiedt for their critical comments and invaluable discussion over the course of this study. This study was supported by the National Institutes of Health; grant number: DC00422 (HL); grant number: DC07506 (HL); grant number: DC00713 (BAS); grant number: DC002756 (DMF); American Academy of Otolaryngology–Head and Neck Surgery; grant number: CORE 130165 (LAK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Lang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kilpatrick, L., Li, Q., Yang, J. et al. Adeno-associated virus-mediated gene delivery into the scala media of the normal and deafened adult mouse ear. Gene Ther 18, 569–578 (2011). https://doi.org/10.1038/gt.2010.175

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2010.175

Keywords

This article is cited by

Search

Quick links