Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Sp1 binds to the G allele of the−1087 polymorphism in the IL-10 promoter and promotes IL-10 mRNA transcription and protein production

Abstract

Interleukin (IL)-10 is an important cytokine in immune regulation and promotes B-cell proliferation and antibody production. High levels of IL-10 were found in subjects with autoimmune diseases. The A to G single nucleotide polymorphism at –1087 of the IL-10 promoter is associated with differences in promoter activity and IL-10 production. The objectives of this study were to analyze differences in the transcription factor binding to the –1087 IL-10 gene polymorphism in B-cells, the influence of the A to G transition on the IL-10 and Sp1 gene expression in B-cells after lipopolysaccharide (LPS) stimulation and the effect of knockdown of Sp1 on IL-10 gene expression. Using B-cell lines obtained from subjects with GG and AA genotypes for the −1087 polymorphism and chromatin immunoprecipitation assay, we showed that the transcription factors PU.1 and Spi-B bound to both G and A alleles, whereas the transcription factor Sp1 only bound to the G allele. LPS stimulation of the B-cells resulted in a larger increase in IL-10 and Sp1 gene expression for GG genotypes than AA genotypes and knockdown of Sp1 gene expression resulted in a decrease in IL-10 mRNA transcription. IL-10 production was higher for the GG genotype than for the AA genotype.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Kantor AB . A new nomenclature for B cells. Immunol Today 1991; 12: 388.

    Article  CAS  PubMed  Google Scholar 

  2. Porakishvili N, Mageed R, Jamin C, Pers J-O, Kulikova N, Renaudineau Y et al. Recent progress in the understanding of B-cell functions in autoimmunity. Scand J Immunol 2001; 54: 30–38.

    Article  CAS  PubMed  Google Scholar 

  3. Csiszár A, Nagy GY, Gergely P, Pozsony T, Pócsik E . Increased interferon-gamma (IFN-gamma), IL-10 and decreased IL-4 mRNA expression in peripheral blood mononuclear cells (PBMC) from patients with systemic lupus erythematosus (SLE). Clin Exp Immunol 2000; 122: 464–470.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Klinman DM, Steinberg AD . Systemic autoimmune disease arises from polyclonal B cell activation. J Exp Med 1987; 165: 1755–1760.

    Article  CAS  PubMed  Google Scholar 

  5. Salgame P, Abrams JS, Clayberger C, Goldstein H, Convit J, Modlin RL et al. Differing lymphokine profiles of functional subsets of human CD4 and CD8T cell clones. Science 1991; 254: 279–282.

    Article  CAS  PubMed  Google Scholar 

  6. Burastero SE, Casali P, Wilder RL, Notkins AL . Monoreactive high affinity and polyreactive low affinity rheumatoid factors are produced by CD5+ B cells from patients with rheumatoid arthritis. J Exp Med 1988; 168: 1979–1992.

    Article  CAS  PubMed  Google Scholar 

  7. Dauphinée M, Tovar Z, Talal N . B cells expressing CD5 are increased in Sjogren's syndrome. Arthritis Rheum 1988; 31: 642–647.

    Article  PubMed  Google Scholar 

  8. Zheng NY, Wilson K, Wang X, Boston A, Kolar G, Jackson SM et al. Human immunoglobulin selection associated with class switch and possible tolerogenic origins for C delta class-switched B cells. J Clin Invest 2004; 113: 1188–1201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Berglundh T, Liljenberg B, Tarkowski A, Lindhe J . The presence of local and circulating autoreactive B cells in patients with advanced periodontitis. J Clin Periodontol 2002; 29: 281–286.

    Article  PubMed  Google Scholar 

  10. Sugawara M, Yamashita K, Yoshie H, Hara K . Detection of, and anti-collagen antibody produced by, CD5-positive B cells in inflamed gingival tissues. J Periodontal Res 1992; 27: 489–498.

    Article  CAS  PubMed  Google Scholar 

  11. Moore KW, de Waal Malefyt R, Coffman RL, O’Garra A . Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 2001; 19: 683–765.

    Article  CAS  PubMed  Google Scholar 

  12. Burdin N, Rousset F, Banchereau J . B-cell-derived IL-10: production and function. Methods 1997; 11: 98–111.

    Article  CAS  PubMed  Google Scholar 

  13. Llorente L, Richaud-Patin Y, Fior R, Alcocer-Varela J, Wijdenes J, Fourrier BM et al. In vivo production of interleukin-10 by non-T cells in rheumatoid arthritis, Sjogren's syndrome, and systemic lupus erythematosus. A potential mechanism of B lymphocyte hyperactivity and autoimmunity. Arthritis Rheum 1994; 37: 1647–1655.

    Article  CAS  PubMed  Google Scholar 

  14. Llorente L, Richaud-Patin Y, Wijdenes J, Alcocer-Varela J, Maillot MC, Durand-Gasselin I et al. Spontaneous production of interleukin-10 by B lymphocytes and monocytes in systemic lupus erythematosus. Eur Cytokine Netw 1993; 4: 421–427.

    CAS  PubMed  Google Scholar 

  15. Mongan AE, Ramdahin S, Warrington RJ . Interleukin-10 response abnormalities in systemic lupus erythematosus. Scand J Immunol 1997; 46: 406–412.

    Article  CAS  PubMed  Google Scholar 

  16. O’Garra A, Chang R, Go N, Hastings R, Haughton G, Howard M . Ly-1 B (B-1) cells are the main source of B cell-derived interleukin 10. Eur J Immunol 1992; 22: 711–717.

    Article  PubMed  Google Scholar 

  17. Aramaki M, Nagasawa T, Koseki T, Ishikawa I . Presence of activated B-1 cells in chronic inflamed gingival tissue. J Clin Immunol 1998; 18: 421–429.

    Article  CAS  PubMed  Google Scholar 

  18. Tabeta K, Yamazaki K, Hotokezaka H, Yoshie H, Hara K . Elevated humoral immune response to heat shock protein 60 (hsp60) family in periodontitis patients. Clin Exp Immunol 2000; 120: 285–293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rees LE, Wood NA, Gillespie KM, Lai KN, Gaston K, Mathieson PW . The interleukin-10-1082 G/A polymorphism: allele frequency in different populations and functional significance. Cell Mol Life Sci 2002; 59: 560–569.

    Article  CAS  PubMed  Google Scholar 

  20. Suárez A, Castro P, Alonso R, Mozo L, Gutiérrez C . Interindividual variations in constitutive interleukin-10 messenger RNA and protein levels and their association with genetic polymorphisms. Transplantation 2003; 75: 711–717.

    Article  PubMed  Google Scholar 

  21. Unterberger C, Staples KJ, Smallie T, Williams L, Foxwell B, Schaefer A et al. Role of STAT3 in glucocorticoid-induced expression of the human IL-10 gene. Mol Immunol 2008; 45: 3230–3237.

    Article  CAS  PubMed  Google Scholar 

  22. Kube D, Platzer C, von Knethen A, Straub H, Bohlen H, Hafner M . et al. Isolation of the human interleukin 10 promoter. Characterization of the promoter activity in Burkitt's lymphoma cell lines. Cytokine 1995; 7: 1–7.

    Article  CAS  PubMed  Google Scholar 

  23. Kube D, Rieth H, Eskdale J, Kremsner PG, Gallagher G . Structural characterisation of the distal 5′ flanking region of the human interleukin-10 gene. Genes Immun 2001; 2: 181–190.

    Article  CAS  PubMed  Google Scholar 

  24. Eskdale J, Kube D, Tesch H, Gallagher G . Mapping of the human IL10 gene and further characterization of the 5′ flanking sequence. Immunogenetics 1997; 46: 120–128.

    Article  CAS  PubMed  Google Scholar 

  25. Mörmann M, Rieth H, Hua TD, Assohou C, Roupelieva M, Hu SL et al. Mosaics of gene variations in the Interleukin-10 gene promoter affect interleukin-10 production depending on the stimulation used. Genes Immun 2004; 5: 246–255.

    Article  PubMed  Google Scholar 

  26. Reuss E, Fimmers R, Kruger A, Becker C, Rittner C, Hohler T . Differential regulation of interleukin-10 production by genetic and environmental factors—a twin study. Genes Immun 2002; 3: 407–413.

    Article  CAS  PubMed  Google Scholar 

  27. Turner DM, Williams DM, Sankaran D, Lazarus M, Sinnott PJ, Hutchinson IV . An investigation of polymorphism in the interleukin-10 gene promoter. Eur J Immunogenet 1997; 24: 1–8.

    Article  CAS  PubMed  Google Scholar 

  28. Larsson L, Johansson P, Jansson A, Donati M, Rymo L, Berglundh T . The Sp1 transcription factor binds to the G-allele of the -1087 IL-10 gene polymorphism and enhances transcriptional activation. Genes Immun 2009; 10: 280–284.

    Article  CAS  PubMed  Google Scholar 

  29. Schug J . Using TESS to predict transcription factor binding sites in DNA sequence. Curr Protoc Bioinformatics 2008; Chapter 2: Unit 2 6: 1–15.

  30. Matys V, Kel-Margoulis OV, Fricke E, Liebich I, Land S, Barre-Dirrie A et al. TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes. Nucleic Acids Res 2006; 34: D108–D110.

    Article  CAS  PubMed  Google Scholar 

  31. Westendorp RG, Langermans JA, Huizinga TW, Elouali AH, Verweij CL, Boomsma DI et al. Genetic influence on cytokine production and fatal meningococcal disease. Lancet 1997; 349: 170–173.

    Article  CAS  PubMed  Google Scholar 

  32. Kremer KN, Kumar A, Hedin KE . Haplotype-independent costimulation of IL-10 secretion by SDF-1/CXCL12 proceeds via AP-1 binding to the human IL-10 promoter. J Immunol 2007; 178: 1581–1588.

    Article  CAS  PubMed  Google Scholar 

  33. Lucas M, Zhang X, Prasanna V, Mosser DM . ERK activation following macrophage FcgammaR ligation leads to chromatin modifications at the IL-10 locus. J Immunol 2005; 175: 469–477.

    Article  CAS  PubMed  Google Scholar 

  34. Brightbill HD, Plevy SE, Modlin RL, Smale ST . A prominent role for Sp1 during lipopolysaccharide-mediated induction of the IL-10 promoter in macrophages. J Immunol 2000; 164: 1940–1951.

    Article  CAS  PubMed  Google Scholar 

  35. Chanteux H, Guisset AC, Pilette C, Sibille Y . LPS induces IL-10 production by human alveolar macrophages via MAPKinases- and Sp1-dependent mechanisms. Respir Res 2007; 8: 71.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Tone M, Powell MJ, Tone Y, Thompson SA, Waldmann H . IL-10 gene expression is controlled by the transcription factors Sp1 and Sp3. J Immunol 2000; 165: 286–291.

    Article  CAS  PubMed  Google Scholar 

  37. Miyake K . Innate recognition of lipopolysaccharide by Toll-like receptor 4-MD-2. Trends Microbiol 2004; 12: 186–192.

    Article  CAS  PubMed  Google Scholar 

  38. Steinke JW, Barekzi E, Hagman J, Borish L . Functional analysis of -571 IL-10 promoter polymorphism reveals a repressor element controlled by sp1. J Immunol 2004; 173: 3215–3222.

    Article  CAS  PubMed  Google Scholar 

  39. Perkins ND, Agranoff AB, Pascal E, Nabel GJ . An interaction between the DNA-binding domains of RelA(p65) and Sp1 mediates human immunodeficiency virus gene activation. Mol Cell Biol 1994; 14: 6570–6583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hoffmann SC, Stanley EM, Cox ED, Craighead N, DiMercurio BS, Koziol DE et al. Association of cytokine polymorphic inheritance and in vitro cytokine production in anti-CD3/CD28-stimulated peripheral blood lymphocytes. Transplantation 2001; 72: 1444–1450.

    Article  CAS  PubMed  Google Scholar 

  41. Crawley E, Kay R, Sillibourne J, Patel P, Hutchinson I, Woo P . Polymorphic haplotypes of the interleukin-10 5′ flanking region determine variable interleukin-10 transcription and are associated with particular phenotypes of juvenile rheumatoid arthritis. Arthritis Rheum 1999; 42: 1101–1108.

    Article  CAS  PubMed  Google Scholar 

  42. Yilmaz V, Yentür SP, Saruhan-Direskeneli G . IL-12 and IL-10 polymorphisms and their effects on cytokine production. Cytokine 2005; 30: 188–194.

    Article  CAS  PubMed  Google Scholar 

  43. Nelson JD, Denisenko O, Sova P, Bomsztyk K . Fast chromatin immunoprecipitation assay. Nucleic Acids Res 2006; 34: e2.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Sjöblom A, Yang W, Palmqvist L, Jansson A, Rymo L . An ATF/CRE element mediates both EBNA2-dependent and EBNA2-independent activation of the Epstein-Barr virus LMP1 gene promoter. J Virol 1998; 72: 1365–1376.

    PubMed  PubMed Central  Google Scholar 

  45. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 2002; 3: RESEARCH0034 (e-pub ahead of print 18 June 2002).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Andersen LC, Jensen JL, Orntoft TF . Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 2004; 64: 5245–5250.

    Article  CAS  PubMed  Google Scholar 

  47. Livak KJ, Schmittgen TD . Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001; 25: 402–408.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Berglundh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larsson, L., Rymo, L. & Berglundh, T. Sp1 binds to the G allele of the−1087 polymorphism in the IL-10 promoter and promotes IL-10 mRNA transcription and protein production. Genes Immun 11, 181–187 (2010). https://doi.org/10.1038/gene.2009.103

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2009.103

Keywords

This article is cited by

Search

Quick links