Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Comparative analysis of enzyme and pathway engineering strategies for 5FC-mediated suicide gene therapy applications

Abstract

Bacterial- and yeast- encoded cytosine deaminases (bCD and yCD, respectively) are widely investigated suicide enzymes used in combination with the prodrug 5-fluorocytosine (5FC) to achieve localized cytotoxicity. Yet characteristics such as poor turnover rates of 5FC (bCD) and enzyme thermolability (yCD) preclude their full therapeutic potential. We previously applied regio-specific random mutagenesis and computational design to create novel bCD and yCD variants with altered substrate preference (bCD1525) or increased thermostability (yCDdouble, yCDtriple) to aid in overcoming these limitations. Others have utilized pathway engineering in which the microbial enzyme uracil phosphoribosyltransferase (UPRT) is fused with its respective CD, creating bCD/bUPRT or yCD/yUPRT. In this study, we evaluated whether the overlay of CD mutants onto their respective CD/UPRT fusion construct would further enhance 5FC activation, cancer cell prodrug sensitivity and bystander activity in vitro and in vivo. We show that all mutant fusion enzymes allowed for significant reductions in IC50 values relative to their mutant CD counterparts. However, in vivo the CD mutants displayed enhanced tumor growth inhibition capacity relative to the mutant fusions, with bCD1525 displaying the greatest tumor growth inhibition and bystander activity. In summary, mutant bCD1525 appears to be the most effective of all bacterial or yeast CD or CD/UPRT enzymes examined and as such is likely to be the best choice to significantly improve the clinical outcome of CD/5FC suicide gene therapy applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Olga G, Gabi UD . Gene directed enzyme/prodrug therapy of cancer: historical appraisal and future prospectives. J Cell Physiol 2001; 187: 22–36.

    Article  Google Scholar 

  2. Longley DB, Harkin DP, Johnston PG . 5-Fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer 2003; 3: 330–338.

    Article  CAS  PubMed  Google Scholar 

  3. Huber BE, Austin EA, Richards CA, Davis ST, Good SS . Metabolism of 5-fluorocytosine to 5-fluorouracil in human colorectal tumor cells transduced with the cytosine deaminase gene: significant antitumor effects when only a small percentage of tumor cells express cytosine deaminase. Proc Natl Acad Sci USA 1994; 91: 8302–8306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mullen CA, Coale MM, Lowe R, Blaese RM . Tumors expressing the cytosine deaminase suicide gene can be eliminated in vivo with 5-fluorocytosine and induce protective immunity to wild type tumor. Cancer Res 1994; 54: 1503–1506.

    CAS  PubMed  Google Scholar 

  5. Austin EA, Huber BE . A first step in the development of gene therapy for colorectal carcinoma: cloning, sequencing, and expression of Escherichia coli cytosine deaminase. Mol Pharmacol 1993; 43: 380–387.

    CAS  PubMed  Google Scholar 

  6. Kievit E, Bershad E, Ng E, Sethna P, Dev I, Lawrence TS et al. Superiority of yeast over bacterial cytosine deaminase for enzyme/prodrug gene therapy in colon cancer xenografts. Cancer Res 1999; 59: 1417–1421.

    CAS  PubMed  Google Scholar 

  7. Kievit E, Nyati MK, Ng E, Stegman LD, Parsels J, Ross BD et al. Yeast cytosine deaminase improves radiosensitization and bystander effect by 5-fluorocytosine of human colorectal cancer xenografts. Cancer Res 2000; 60: 6649–6655.

    CAS  PubMed  Google Scholar 

  8. Korkegian A, Black ME, Baker D, Stoddard BL . Computational thermostabilization of an enzyme. Science 2005; 308: 857–860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Stolworthy TS, Korkegian AM, Willmon CL, Ardiani A, Cundiff J, Stoddard BL et al. Yeast cytosine deaminase mutants with increased thermostability impart sensitivity to 5-fluorocytosine. J Mol Biol 2008; 377: 854–869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fuchita M, Ardiani A, Zhao L, Serve K, Stoddard BL, Black ME . Bacterial cytosine deaminase mutants created by molecular engineering show improved 5-fluorocytosine-mediated cell killing in vitro and in vivo. Cancer Res 2009; 69: 4791–4799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lundegaard C, Jensen KF . Kinetic mechanism of uracil phosphoribosyltransferase from Escherichia coli and catalytic importance of the conserved proline in the PRPP binding site. Biochemistry 1999; 38: 3327–3334.

    Article  CAS  PubMed  Google Scholar 

  12. Kern L, de Montigny J, Jund R, Lacroute F . The FUR1 gene of Saccharomyces cerevisiae: cloning, structure and expression of wild-type and mutant alleles. Gene 1990; 88: 149–157.

    Article  CAS  PubMed  Google Scholar 

  13. Kanai F, Kawakami T, Hamada H, Sadata A, Yoshida Y, Tanaka T et al. Adenovirus-mediated transduction of Escherichia coli uracil phosphoribosyltransferase gene sensitizes cancer cells to low concentrations of 5-fluorouracil. Cancer Res 1998; 58: 1946–1951.

    CAS  PubMed  Google Scholar 

  14. Vauthey JN, de Marsh R, Cendan JC, Chu NM, Copeland EM . Arterial therapy of hepatic colorectal metastases. Br J Surgery 1996; 83: 447–455.

    Article  CAS  Google Scholar 

  15. Harris JD, Gutierrez AA, Hurst HC, Sikora K, Lemoine NR . Gene therapy for cancer using tumour-specific prodrug activation. Gene Ther 1994; 1: 170–175.

    CAS  PubMed  Google Scholar 

  16. Tiraby M, Cazaux C, Baron M, Drocourt D, Reynes J-P, Tiraby G . Concomitant expression of E. coli cytosine deaminase and uracil phosphoribosyltransferase improves the cytotoxicity of 5-fluorocytosine. FEMS Microbiol Lett 1998; 167: 41–49.

    Article  CAS  PubMed  Google Scholar 

  17. Erbs P, Regulier E, Kintz J, Leroy P, Poitevin Y, Exinger F et al. In vivo cancer gene therapy by adenovirus-mediated transfer of a bifunctional yeast cytosine deaminase/uracil phosphoribosyltransferase fusion gene. Cancer Res 2000; 60: 3813–3822.

    CAS  PubMed  Google Scholar 

  18. Xing L, Sun X, Deng X, Kotedia K, Urano M, Koutcher JA et al. Expression of the bifunctional suicide gene CDUPRT increases radiosensitization and bystander effect of 5-FC in prostate cancer cells. Radiother Oncol 2009; 92: 345–352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gopinath P, Ghosh S . Apoptotic induction with bifunctional E. coli cytosine deaminase-uracil phosphoribosyltransferase mediated suicide gene therapy is synergized by curcumin treatment in vitro. Mol Biotechnol 2008; 39: 39–48.

    Article  CAS  PubMed  Google Scholar 

  20. Koyama F, Sawada H, Hirao T, Fujii H, Hamada H, Nakano H . Combined suicide gene therapy for human colon cancer cells using adenovirus-mediated transfer of Escherichia coli cytosine deaminase gene and Escherichia coli uracil phosphoribosyltransferase gene with 5-fluorocytosine. Cancer Gene Ther 2000; 7: 1015.

    Article  CAS  PubMed  Google Scholar 

  21. Andersen PS, Smith JM, Mygind B . Characterization of the upp gene encoding uracil phosphoribosyltransferase of Escherichia coli K12. Eur J Biochem 1992; 204: 51–56.

    Article  CAS  PubMed  Google Scholar 

  22. Arsene-Ploetze F, Nicoloff H, Kammerer B, Martinussen J, Bringel F . Uracil salvage pathway in Lactobacillus plantarum: transcription and genetic studies. J Bacteriol 2006; 188: 4777–4786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Brady WA, Kokoris MS, Fitzgibbon M, Black ME . Cloning, characterization, and modeling of mouse and human guanylate kinases. J Biol Chem 1996; 271: 16734–16740.

    Article  CAS  PubMed  Google Scholar 

  24. Mahan SD, Ireton GC, Stoddard BL, Black ME . Alanine-scanning mutagenesis reveals a cytosine deaminase mutant with altered substrate preference. Biochemistry 2004; 43: 8957–8964.

    Article  CAS  PubMed  Google Scholar 

  25. Mahan SD, Ireton GC, Knoeber C, Stoddard BL, Black ME . Random mutagenesis and selection of Escherichia coli cytosine deaminase for cancer gene therapy. Protein Eng Des Sel 2004; 17: 625–633.

    Article  CAS  PubMed  Google Scholar 

  26. Kuriyama S, Masui K, Sakamoto T, Nakatani T, Kikukawa M, Tsujinoue H et al. Bystander effect caused by cytosine deaminase gene and 5-fluorocytosine in vitro is substantially mediated by generated 5-fluorouracil. Anticancer Res 1998; 18: 3399–3406.

    CAS  PubMed  Google Scholar 

  27. Lawrence TS, Rehemtulla A, Ng EY, Wilson M, Trosko JE, Stetson PL . Preferential cytotoxicity of cells transduced with cytosine deaminase compared to bystander cells after treatment with 5-flucytosine. Cancer Res 1998; 58: 2588–2593.

    CAS  PubMed  Google Scholar 

  28. Franken NAP, Rodermond HM, Stap J, Haveman J, van Bree C . Clonogenic assay of cells in vitro. Nat Protoc 2006; 1: 2315–2319.

    Article  CAS  PubMed  Google Scholar 

  29. Graepler F, Lemken M-L, Wybranietz WA, Schmidt U, Smirnow I, Gross CD et al. Bifunctional chimeric SuperCD suicide gene - YCD:YUPRT fusion is highly effective in a rat hepatoma model. World J Gastoenterol 2005; 11: 6910–6919.

    Article  CAS  Google Scholar 

  30. Chung-Faye GA, Chen MJ, Green NK, Burton A, Anderson D, Mautner V et al. In vivo gene therapy for colon cancer using adenovirus-mediated transfer of the fusion gene cytosine deaminase and uracil phosphoribosyltransferase. Gene Ther 2001; 8: 1547–1554.

    Article  CAS  PubMed  Google Scholar 

  31. Bourbeau D, Lavoie G, Nalbantoglu J, Massie B . Suicide gene therapy with an adenovirus expressing the fusion gene CD∷UPRT in human glioblastomas: different sensitivities correlate with p53 status. J Gene Med 2004; 6: 1320–1332.

    Article  CAS  PubMed  Google Scholar 

  32. Pandha HS, Martin L-A, Rigg A, Hurst HC, Stamp GW, Sikora K et al. Genetic prodrug activation therapy for breast cancer: a phase I clinical trial of erbB-2-directed suicide gene expression. J Clin Oncol 1999; 17: 2180–2189.

    Article  CAS  PubMed  Google Scholar 

  33. Crystal RG, Hirschowitz E, Lieberman M, Daly J, Kazam E, Henschke C et al. Phase I study of direct administration of a replication deficient adenovirus vector containing the E. coli cytosine deaminase gene to metastatic colon carcinoma of the liver in association with the oral administration of the pro-drug 5-fluorocytosine. Hum Gene Ther 1997; 8: 985–1001.

    Article  CAS  PubMed  Google Scholar 

  34. Freytag SO, Stricker H, Pegg J, Paielli D, Pradhan DG, Peabody J et al. Phase I study of replication-competent adenovirus-mediated double-suicide gene therapy in combination with conventional-dose three-dimensional conformal radiation therapy for the treatment of newly diagnosed, intermediate to high-risk prostate cancer. Cancer Res 2003; 63: 7497–7506.

    CAS  PubMed  Google Scholar 

  35. Park JI, Cao L, Platt VM, Huang Z, Stull RA, Dy EE et al. Antitumor therapy mediated by 5-fluorocytosine and a recombinant fusion protein containing TSG-6 hyaluronan binding domain and yeast cytosine deaminase. Mol Pharm 2009; 6: 801–812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Senter PD, Su PC, Katsuragi T, Sakai T, Cosand WL, Hellström I et al. Generation of 5-fluorouracil from 5-fluorocytosine by monoclonal antibody-cytosine deaminase conjugates. Bioconjug Chem 1991; 2: 447–451.

    Article  CAS  PubMed  Google Scholar 

  37. Khil MS, Kim JH, Mullen CA, Kim SH, Freytag SO . Radiosensitization by 5-fluorocytosine of human colorectal carcinoma cells in culture transduced with cytosine deaminase gene. Clin Cancer Res 1996; 2: 53–57.

    CAS  PubMed  Google Scholar 

  38. Khatri A, Husaini Y, Ow K, Chapman J, Russell PJ . Cytosine deaminase-uracil phosphoribosyltransferase and interleukin (IL)-12 and IL-18: a multimodal anticancer interface marked by specific modulation in serum cytokines. Clin Cancer Res 2009; 15: 2323–2334.

    Article  CAS  PubMed  Google Scholar 

  39. Ito S, Natsume A, Shimato S, Ohno M, Kato T, Chansakul P et al. Human neural stem cells transduced with IFN-β and cytosine deaminase genes intensify bystander effect in experimental glioma. Cancer Gene Ther 2010; 17: 299–306.

    Article  CAS  PubMed  Google Scholar 

  40. Foloppe J, Kintz J, Futin N, Findeli A, Cordier P, Schlesinger Y et al. Targeted delivery of a suicide gene to human colorectal tumors by a conditionally replicating vaccinia virus. Gene Ther 2008; 15: 1361–1371.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health through grants R01CA85939 (ME Black) and T32GM008336 (AJ Johnson).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M E Black.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, A., Ardiani, A., Sanchez-Bonilla, M. et al. Comparative analysis of enzyme and pathway engineering strategies for 5FC-mediated suicide gene therapy applications. Cancer Gene Ther 18, 533–542 (2011). https://doi.org/10.1038/cgt.2011.6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2011.6

Keywords

This article is cited by

Search

Quick links