Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Strain-specific prion-protein conformation determined by metal ions

Abstract

In animals infected with a transmissible spongiform encephalopathy, or prion disease, conformational isomers (known as PrPSc proteins) of the wild-type, host-encoded cellular prion protein (PrPC) accumulate. The infectious agents, prions, are composed mainly of these conformational isomers, with distinct prion isolates or strains being associated with different PrPSc conformations and patterns of glycosylation. Here we show that two different human PrPSc types, seen in clinically distinct subtypes of classical Creutzfeldt–Jakob disease, can be interconverted in vitro by altering their metal-ion occupancy. The dependence of PrPSc conformation on the binding of copper and zinc represents a new mechanism for post-translational modification of PrP and for the generation of multiple prion strains, with widespread implications for both the molecular classification and the pathogenesis of prion diseases in humans and animals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Western blot of human PrPSc types 1–4 following treatment with protease K, using anti-PrP monoclonal antibody 3F4 for the western blot.
Figure 2: Mean duration of illness for CJD patients with PrPSc types 1 and 2.
Figure 3: Digestion of human PrPSc by proteinase K in the presence of metal chelators.
Figure 4: Both Cu2+ and Zn2+ interact with PrPSc.

Similar content being viewed by others

References

  1. Will, R. G. et al. A new variant of Creutzfeldt-Jakob disease in the UK. Lancet 347, 921–925 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  2. Collinge, J., Sidle, K. C. L., Meads, J., Ironside, J. & Hill, A. F. Molecular analysis of prion strain variation and the aetiology of ‘new variant’ CJD. Nature 383, 685–690 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  3. Bruce, M. E. et al. Transmissions to mice indicate that ‘new variant’ CJD is caused by the BSE agent. Nature 389, 498–501 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Hill, A. F. et al. The same prion strain causes vCJD and BSE. Nature 389, 448–450 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  5. Prusiner, S. B. Molecular biology of prion diseases. Science 252, 1515–1522 (1991).

    Article  CAS  PubMed  Google Scholar 

  6. Pan, K.-M. et al. Conversion of α-helices into β-sheets features in the formation of the scrapie prion proteins. Proc. Natl Acad. Sci. USA 90, 10962–10966 ( 1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Riek, R. et al. NMR structure of the mouse prion protein domain PrP (121–231) . Nature 382, 180–182 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Bessen, R. A. & Marsh, R. F. Distinct PrP properties suggest the molecular basis of strain variation in transmissible mink encephalopathy . J. Virol. 68, 7859–7868 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Bessen, R. A. et al. Non-genetic propagation of strain-specific properties of scrapie prion protein. Nature 375, 698– 700 (1995).

    CAS  PubMed  Google Scholar 

  10. Telling, G. C. et al. Evidence for the conformation of the pathologic isoform of the prion protein in enciphering and propagating prion diversity. Science 274, 2079–2082 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  11. Caughey, B., Raymond, G. J. & Bessen, R. A. Strain-dependent differences in β-sheet conformations of abnormal prion protein. J. Biol. Chem. 273, 32230–32235 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Collinge, J. Human prion diseases and bovine spongiform encephalopathy (BSE). Hum. Mol. Genet. 6, 1699–1705 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Collinge, J., Palmer, M. S. & Dryden, A. J. Genetic predisposition to iatrogenic Creutzfeldt–Jakob disease. Lancet 337, 1441– 1442 (1991).

    Article  CAS  PubMed  Google Scholar 

  14. Palmer, M. S., Dryden, A. J., Hughes, J. T. & Collinge, J. Homozygous prion protein genotype predisposes to sporadic Creutzfeldt-Jakob disease. Nature 352, 340– 342 (1991).

    Article  CAS  PubMed  Google Scholar 

  15. Collinge, J., Beck, J., Campbell, T., Estibeiro, K. & Will, R. G. Prion protein gene analysis in new variant cases of Creutzfeldt–Jakob disease. Lancet 348, 56 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Hill, A. F. et al. Investigation of variant Creutzfeldt–Jakob disease and other human prion diseases with tonsil biopsy samples. Lancet 353, 183–189 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Parchi, P. et al. Molecular basis of phenotypic variability in sporadic Creutzfeldt–Jakob disease. Ann. Neurol. 39, 767– 778 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Parchi, P. et al. Typing prion isoforms. Nature 386, 232–233 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Hornshaw, M. P., McDermott, J. R. & Candy, J. M. Copper binding to the N-terminal tandem repeat regions of mammalian and avian prion protein. Biochem. Biophys. Res. Commun. 207, 621–629 ( 1995).

    Article  CAS  PubMed  Google Scholar 

  20. Hornshaw, M. P., McDermott, J. R., Candy, J. M. & Lakey, J. H. Copper binding to the N-terminal tandem repeat region of mammalian and avian prion protein: structural studies using synthetic peptides. Biochem. Biophys. Res. Commun. 214, 993–999 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Miura, T., Hori-i, A. & Takeuchi, H. Metal-dependent a-helix formation promoted by the glycine-rich octapeptide region of prion protein. FEBS Lett. 396 , 248–252 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Brown, D. R. et al. The cellular prion protein binds copper in vivo. Nature 390, 684–687 ( 1997).

    Article  Google Scholar 

  23. Stöckel, J., Safar, J., Wallace, A. C., Cohen, F. E. & Prusiner, S. B. Prion protein selectively binds copper(II) ions. Biochemistry 37, 7185–7193 (1998).

    Article  PubMed  Google Scholar 

  24. Viles, J. H. et al. Copper binding to the prion protein: structural implications of four identical cooperative binding sites. Proc. Natl Acad. Sci. USA 96, 2042–2047 ( 1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Atwood, C. S. et al. Dramatic aggregation of Alzheimer Aβ by Cu(II) is induced by conditions representing physiological acidosis. J. Biol. Chem. 273, 12817–12826 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  26. Assaf, S. Y. & Chung, S.-H. Release of endogenous Zn2+ from brain tissue during activity. Nature 308, 734–736 (1984).

    Article  CAS  PubMed  Google Scholar 

  27. Lovell, M. A. et al. Copper, iron and zinc in Alzheimer’s disease senile plaques. J. Neurol. Sci. 158, 47– 52 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Collins, S. et al. Surgical treatment and risk of sporadic Creutzfeldt-Jakob disease: a case-control study. Lancet 353, 693–697 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. McKenzie, D. et al. Reversibility of scrapie inactivation is enhanced by copper . J. Biol. Chem. 273, 25545– 25547 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Carlton, W. W. Spongiform encephalopathy induced in rats and guinea pigs by cuprizone. Exp. Mol. Pathol. 10, 274–287 (1969).

    Article  CAS  PubMed  Google Scholar 

  31. Pattison, I. H. & Jebbett, J. N. Histopathological similarities between scrapie and cuprizone toxicity in mice. Nature 230, 115–117 ( 1971).

    Article  CAS  PubMed  Google Scholar 

  32. Pauly, P. C. & Harris, D. A. Copper stimulates endocytosis of the prion protein. J. Biol. Chem. 273, 33107–33110 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Dawson, R. M. C., Elliott, D. C., Elliott, W. H. & Jones, K. M. Data for Biochemical Research 3rd edn 399–415 (Clarendon, Oxford, 1986).

    Google Scholar 

Download references

Acknowledgements

This work was funded by the Medical Research Council and Wellcome Trust. We thank R. Will, J. Ironside and colleagues at the National CJD Surveillance Unit for help with this study.

Correspondence and requests for materials should be addressed to J. C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Collinge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wadsworth, J., Hill, A., Joiner, S. et al. Strain-specific prion-protein conformation determined by metal ions. Nat Cell Biol 1, 55–59 (1999). https://doi.org/10.1038/9030

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/9030

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing