Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Universal trees based on large combined protein sequence data sets

Abstract

Universal trees of life based on small-subunit (SSU) ribosomal RNA (rRNA) support the separate mono/holophyly of the domains Archaea (archaebacteria), Bacteria (eubacteria) and Eucarya (eukaryotes) and the placement of extreme thermophiles at the base of the Bacteria1,2,3,4. The concept of universal tree reconstruction recently has been upset by protein trees that show intermixing of species from different domains5,6. Such tree topologies have been attributed to either extensive horizontal gene transfer7 or degradation of phylogenetic signals because of saturation for amino acid substitutions8. Here we use large combined alignments of 23 orthologous proteins conserved across 45 species from all domains to construct highly robust universal trees. Although individual protein trees are variable in their support of domain integrity, trees based on combined protein data sets strongly support separate monophyletic domains. Within the Bacteria, we placed spirochaetes as the earliest derived bacterial group. However, elimination from the combined protein alignment of nine protein data sets, which were likely candidates for horizontal gene transfer, resulted in trees showing thermophiles as the earliest evolved bacterial lineage. Thus, combined protein universal trees are highly congruent with SSU rRNA trees in their strong support for the separate monophyly of domains as well as the early evolution of thermophilic Bacteria.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Minimal length MP universal trees based on 23 combined protein data sets.
Figure 2: Minimal length MP universal tree based on 14 combined protein data sets, with 9 horizontal gene transfer proteins removed.
Figure 3: VLB analysis22 showing support for major nodes in the MP universal trees.

Similar content being viewed by others

References

  1. Fox, G.E., Magrum, L.J., Balch, W.E., Wolfe, R.S. & Woese, C.R. Classification of methanogenic Bacteria by 16S ribosomal RNA characterization. Proc. Natl. Acad. Sci. USA 74, 4537–4541 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Woese, C.R. Bacterial evolution. Microbiol. Rev. 51, 221–271 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Olsen, G.J., Woese, C.R. & Overbeek, R. The winds of (evolutionary) change: breathing new life into microbiology. J. Bacteriol. 176, 1–6 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pace, N.R. Origin of life—facing up to the physical setting. Cell 65, 531–533 (1991).

    Article  CAS  PubMed  Google Scholar 

  5. Golding, G.B. & Gupta, R.S. Protein-based phylogenies support a chimeric origin for the eukaryotic genome. Mol. Biol. Evol. 12, 1–6 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Brown, J.R. & Doolittle, W.F. Archaea and the prokaryote-eukaryote transition. Microbiol. Mol. Biol. Rev. 61, 456–502 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Doolittle, W.F. Phylogenetic classification and the universal tree. Science 284, 2124–2128 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Forterre, P. & Philippe, H. Where is the root of the universal tree of life? BioEssays 21, 871–879 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Xiong, J., Inoue, K. & Bauer, C.E. Tracking molecular evolution of photosynthesis by characterization of a major photosynthesis gene cluster from Heliobacillus mobilis. Proc. Natl. Acad. Sci. USA 95, 14851–14856 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Baldauf, S.L., Roger, A.J., Wenk-Siefert, I. & Doolittle, W.F. A kingdom-level phylogeny of eukaryotes based on combined protein data. Science 290, 972–977 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Gray, M.W. The endosymbiont hypothesis revisited. Int. Rev. Cytol. 141, 233–357 (1992).

    Article  CAS  PubMed  Google Scholar 

  12. Ibba, M., Morgan, S., Curnow, A.W., Pridmore, D.R., Vothknecht, U.C., Gardner, W., Lin, W., Woese, C.R. & Söll, D. A euryarchaeal lysyl-tRNA synthetase: resemblance to class I synthetases. Science 278, 1119–1122 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Teichmann, S.A. & Mitchison, G. Is there a phylogenetic signal in prokaryote proteins? J. Mol. Evol. 49, 98–107 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Bond, J.P. & Francklyn, C. Proteobacterial histidine-biosynthetic pathways are paraphyletic. J. Mol. Evol. 50, 339–347 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Brown, J.R., Zhang, J. & Hodgson, J.E. A bacterial antibiotic resistance gene with eukaryotic origins. Curr. Biol. 8, R365–R367 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Kurland, C.G. & Andersson, S.G.E. Origin and evolution of the mitochondrial proteome. Microbiol. Mol. Biol. Rev. 64, 786–820 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chihade, J.W., Brown, J.R., Schimmel, P. & Ribas de Pouplana, L. Origin of mitochondria in relation to evolutionary history of eukaryotic alanyl-tRNA synthetase. Proc. Natl. Acad. Sci. USA 97, 12153–12157 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Miller, S.L. & Lazcano, A. The origin of life—Did it occur at high temperatures? J. Mol. Evol. 41, 689–692 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Galtier, N., Tourasse, N. & Gouy, M. A nonhyperthermophilic common ancestor to extant life forms. Science 283, 220–221 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Rivera, M.C. & Lake, J.A. Evidence that eukaryotes and eocyte prokaryotes are immediate relatives. Science 257, 74–76 (1992).

    Article  CAS  PubMed  Google Scholar 

  21. Hassanin, A. Lecointre, G. & Tillier, S. The evolutionary signal of homoplasy in protein-coding gene sequences and its consequences for a priori weighting in phylogeny. C.R. Acad. Sci. 321, 611–620 (1998).

    Article  CAS  Google Scholar 

  22. Springer, M.S., Amrine, H.M., Burk, A. & Stanhope, M.J. Additional support for Afrotheria and Paenungulata, the performance of mitochondrial versus nuclear genes, and the impact of data partitions with heterogeneous base composition. Syst. Biol. 48, 65–75 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Shah, H.N., Gharbia, S.E. & Collins, M.D. The Gram stain: a declining synapomorphy in an emerging evolutionary tree. Rev. Med. Microbiol. 8, 103–100 (1997).

    Article  Google Scholar 

  24. Nelson, K.E. et al. Evidence for lateral gene transfer between Archaea and Bacteria from genome sequence of Thermotoga maritima. Nature 399, 323–329 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Logsdon, J.M., Jr. & Faguy, D.M. Evolutionary genomics: Thermotoga heats up lateral gene transfer. Curr. Biol. 9, R747–R751 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D.J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Thompson, J.D., Higgins, D.G. & Gibson, T. J. CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalities and weight matrix choice., Nucleic Acids Res. 22, 4673–4680 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Felsenstein, J. PHYLIP (Phylongeny Inference Package), version 3.6. (Department of Genetics, University of Washington, Seattle, 2000.)

    Google Scholar 

  29. Swofford, D.L. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. (Sinauer Associates, Sunderland, MA, 1999).

    Google Scholar 

  30. Strimmer, K. & von Haeseler, A. Quartet puzzling: a quartet maximum likelihood method for reconstructing tree topologies. Mol. Biol. Evol. 13, 964–969 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the GlaxoSmithKline Bioformatics Division for their support of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James R. Brown.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, J., Douady, C., Italia, M. et al. Universal trees based on large combined protein sequence data sets. Nat Genet 28, 281–285 (2001). https://doi.org/10.1038/90129

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/90129

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing