Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Immunity or tolerance: Opposite outcomes of microchimerism from skin grafts

Abstract

Solid organ transplants contain small numbers of leukocytes that can migrate into the host and establish long-lasting microchimerism. Although such microchimerism is often associated with graft acceptance and tolerance, it has been difficult to demonstrate a true causal link. Using skin from mutant mice deficient for leukocyte subsets, we found that donor T-cell chimerism is a 'double-edged sword' that can result in very different outcomes depending on the host's immunological maturity and the antigenic disparities involved. In immunologically mature hosts, chimerism resulted in immunity and stronger graft rejection. In immature hosts, it resulted in tolerance to the chimeric T cells, but not to graft antigens not expressed by the chimeric cells. Clinical efforts aimed at augmenting chimerism to induce tolerance must take into account the maturation state of host T cells, the type of chimerism produced by each organ and the antigenic disparities involved, lest the result be increased rejection rather than tolerance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: T cells migrate out of donor skin grafts into immunodeficient recipient mice.
Figure 2: T cell-containing but not T cell-deficient skin grafts induce central tolerance.
Figure 3: Skin-graft-derived T cells but not APCs are a long-lived source of immunogenic graft antigen for CTLs in the periphery.
Figure 4: Inability of chimerism to prevent rejection of grafts mismatched for multiple minor or major histocompatibility complex antigens.
Figure 5: T-cell chimerism induces tolerance of T-cell targets in MHC class I-restricted killer cells, but some other host T-cell responses remain unaffected.

Similar content being viewed by others

References

  1. Snell, G.D. The homograft reaction. Annu. Rev. Microbiol. 11, 439–458 (1957)

    Article  CAS  Google Scholar 

  2. Lafferty, K.J., Prowse, S.J., Simeonovic, C.J. & Warren, H.S. Immunobiology of tissue transplantation: a return to the passenger leukocyte concept. Annu. Rev. Immunol. 1, 143–173 (1983).

    Article  CAS  Google Scholar 

  3. Donohoe, J.A. et al. Cultured thyroid allografts induce a state of partial tolerance in adult recipient mice. Transplantation 35, 62–67 (1983).

    Article  CAS  Google Scholar 

  4. Thomson, A.W. et al. Microchimerism, dendritic cell progenitors and transplantation tolerance. Stem Cells 13, 622–639 (1995).

    Article  CAS  Google Scholar 

  5. Starzl, T.E. et al. Cell migration, chimerism and graft acceptance. Lancet 339, 1579–158 (1992).

    Article  CAS  Google Scholar 

  6. Starzl, T.E. et al. Donor cell chimerism permitted by immunosuppressive drugs: a new view of organ transplantation. Immunol. Today 14, 326–332 (1993).

    Article  CAS  Google Scholar 

  7. Demetris, A.J. et al. Hematolymphoid cell trafficking, microchimerism, and GVH reactions after liver, bone marrow, and heart transplantation. Transplant. Proc. 25, 3337–3344 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Murase, N. et al. Variable chimerism, graft-versus-host disease, and tolerance after different kinds of cell and whole organ transplantation from Lewis to brown Norway rats. Transplantation 60, 158–171 (1995).

    Article  CAS  Google Scholar 

  9. Ko, S. et al. The functional relevance of passenger leukocytes and microchimerism for heart allograft acceptance in the rat. Nature Med 5, 1292–1297 (1999).

    Article  CAS  Google Scholar 

  10. Sun, J., McCaughan, G.W., Gallagher, N.D., Sheil, A.G. & Bishop, G.A. Deletion of spontaneous rat liver allograft acceptance by donor irradiation. Transplantation 60, 233–236 (1995).

    Article  CAS  Google Scholar 

  11. Sriwatanawongsa, V., Davies, H.S. & Calne, R.Y. The essential roles of parenchymal tissues and passenger leukocytes in the tolerance induced by liver grafting in rats. Nature Med. 1, 428–432 (1995).

    Article  CAS  Google Scholar 

  12. Michie, S.A., Kirkpatrick, E.A. & Rouse, R.V. Rare peripheral T cells migrate to and persist in normal mouse thymus. J. Exp. Med. 168, 1929–1934 (1988).

    Article  CAS  Google Scholar 

  13. Shimonkevitz, R.P. & Bevan, M.J. Split tolerance induced by the intrathymic adoptive transfer of thymocyte stem cells. J. Exp. Med. 168, 143–156 (1988).

    Article  CAS  Google Scholar 

  14. Matzinger, P. & Guerder, S. Does T-cell tolerance require a dedicated antigen-presenting cell? Nature 338, 74–76 (1989).

    Article  CAS  Google Scholar 

  15. Ridge, J.P., Di Rosa, F. & Matzinger, P. A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature 393, 474–478 (1998).

    Article  CAS  Google Scholar 

  16. Rammensee, H.G. & Hugin, D. Masking of veto function in vivo by activated CD4+ T lymphocytes. Eur. J. Immunol. 19, 643–648 (1989).

    Article  CAS  Google Scholar 

  17. Zhang, L.I., Martin, D.R., Fung-Leung, W.P., Teh, H.S. & Miller, R.G. Peripheral deletion of mature CD8+ antigen-specific T cells after in vivo exposure to male antigen. J. Immunol. 148, 3740–3745 (1992).

    CAS  PubMed  Google Scholar 

  18. Bonomo, A. & Matzinger, P. Thymus epithelium induces tissue-specific tolerance. J. Exp. Med. 177, 1153–1164 (1993).

    Article  CAS  Google Scholar 

  19. Jhaver, K.G., Chandler, P., Simpson, E. & Mellor, A.L. Thymocyte antigens Do not induce tolerance in the CD4+ T cell compartment. J. Immunol. 163, 4851–4858 (1999).

    CAS  PubMed  Google Scholar 

  20. Rosenberg, A.S., Mizuochi, T., Sharrow, S.O. & Singer, A. Phenotype, specificity, and function of T cell subsets and T cell interactions involved in skin allograft rejection. J. Exp. Med. 165, 1296–1315 (1987).

    Article  CAS  Google Scholar 

  21. Wise, M. et al. CD4 T cells can reject major histocompatibility complex class I-incompatible skin grafts. Eur. J. Immunol. 29, 156–167 (1999).

    Article  CAS  Google Scholar 

  22. Zhang, L. & Miller, R.G. The correlation of prolonged survival of maternal skin grafts with the presence of naturally transferred maternal T cells. J. Immunol. 56, 918–921 (1993).

    CAS  Google Scholar 

  23. Zijenah, L. et al. Mortality in the first 2 years among infants born to human immunodeficiency virus-infected women in Harare, Zimbabwe. J. Infect. Dis. 178, 109–113 (1998).

    Article  CAS  Google Scholar 

  24. Zhang, L. et al. Role of infused CD8+ cells in the induction of peripheral tolerance. J. Immunol. 152, 2222–2228 (1997).

    Google Scholar 

  25. Gallucci, S., Lolkema, M. & Matzinger, P. Natural adjuvants: endogenous activators of dendritic cells. Nature Med. 5, 1249–1255 (1999).

    Article  CAS  Google Scholar 

  26. Wood, K.J. Alternative approaches for the induction of transplantation tolerance. Immunol. Lett. 29, 133–137 (1991).

    Article  CAS  Google Scholar 

  27. Thomas, J.M. et al. Preclinical studies of allograft tolerance in rhesus monkeys: a novel anti-CD3-immunotoxin given peritransplant with donor bone marrow induces operational tolerance to kidney allografts. Transplantation 64, 124–135 (1997).

    Article  CAS  Google Scholar 

  28. de Vries-van der Zwan, A., Besseling, A.C., de Waal, L.P. & Boog, C.J. Specific tolerance induction and transplantation: a single-day protocol. Blood 89, 2596–2601 (1997).

    CAS  PubMed  Google Scholar 

  29. Ridge, J.P., Fuchs, E.J. & Matzinger, P. Neonatal tolerance revisited: turning on newborn T cells with dendritic cells. Science 271, 1723–1726 (1996).

    Article  CAS  Google Scholar 

  30. Wekerle, T. et al. Allogeneic bone marrow transplantation with co-stimulatory blockade induces macrochimerism and tolerance without cytoreductive host treatment. Nature Med. 6, 464–469 (2000).

    Article  CAS  Google Scholar 

  31. Morita, H. et al. A strategy for organ allografts without using immunosuppressants or irradiation. Proc. Natl. Acad. Sci. USA 95, 6947–6952 (1998).

    Article  CAS  Google Scholar 

  32. Introna, M., Allavena, P., Spreafico, F. & Mantovani, A. Inhibition of human natural killer activity by cyclosporin A. Transplantation 31, 113–116 (1981).

    Article  CAS  Google Scholar 

  33. Matzinger, P. Tolerance, danger, and the extended family. Annu. Rev. Immunol. 12, 991–1045 (1994).

    Article  CAS  Google Scholar 

  34. Matzinger, P. An innate sense of danger. Semin. Immunol. 10, 399–415 (1998).

    Article  CAS  Google Scholar 

  35. Zamoyska, R., Waldmann, H. & Matzinger, P. Peripheral tolerance mechanisms prevent the development of autoreactive T cells in chimeras grafted with two minor incompatible thymuses. Eur. J. Immunol. 19, 111–117 (1989).

    Article  CAS  Google Scholar 

  36. Wise, M.P., Bemelman, F., Cobbold, S.P. & Waldmann, H. Linked suppression of skin graft rejection can operate through indirect recognition. J. Immunol. 161, 5813–5816 (1998).

    CAS  PubMed  Google Scholar 

  37. Waldmann, H. & Cobbold, S. How do monoclonal antibodies induce tolerance? A role for infectious tolerance? Annu. Rev. Immunol. 16, 619–644 (1998).

    Article  CAS  Google Scholar 

  38. McCullagh, P. Inability of fetal skin to induce allograft tolerance in fetal lambs. Immunology 67, 489–495 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Schlitt, H.J., Hundrieser, J., Ringe, B. & Pichlmayr, R. Donor-type microchimerism associated with graft rejection eight years after liver transplantation. N. Engl. J. Med. 330, 646–647 (1994).

    Article  CAS  Google Scholar 

  40. Alard, P., Matriano, J.A., Socarras, S., Ortega, M.A. & Streilein, J.W. Detection of donor-derived cells by polymerase chain reaction in neonatally tolerant mice. Microchimerism fails to predict tolerance. Transplantation 60, 1125–1130 (1995).

    Article  CAS  Google Scholar 

  41. Qian, S. et al. Murine liver allograft transplantation: tolerance and donor cell chimerism. Hepatology 19, 916–924 (1994).

    Article  CAS  Google Scholar 

  42. Pearson, T.C. et al. CTLA4-Ig plus bone marrow induces long-term allograft survival and donor specific unresponsiveness in the murine model. Evidence for hematopoietic chimerism. Transplantation 61, 997–1004 (1996).

    Article  CAS  Google Scholar 

  43. Cao, X. et al. Defective lymphoid development in mice lacking expression of the common cytokine receptor gamma chain. Immunity 2, 223–238 (1995).

    Article  CAS  Google Scholar 

  44. Teh, H.-S. et al. Thymic major histocompatibility complex antigens and the αβ T-cell receptor determine the CD4/CD8 phenotype of T-cells. Nature 335, 229–233 (1988).

    Article  CAS  Google Scholar 

  45. Matzinger, P. The JAM Test. A simple assay for DNA fragmentation and cell death. J. Immunol. Meth. 145, 185–192 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Bonney for assistance in thymus grafting, A. Bendelac, O. Lantz, J. Powell, A. Rosenberg, R. Schwartz and S. Gallucci for critical reading of the manuscript (and statistical analysis by O. Lantz), and members of the Ghost Lab (O. Alpan, S. Celli, S. Gallucci, K. Goldman, L. Graham, T. Kamala, R. Massey and J. Ridge) and the Laboratory of Cellular and Molecular Immunology for discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin C. Anderson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, C., Matzinger, P. Immunity or tolerance: Opposite outcomes of microchimerism from skin grafts. Nat Med 7, 80–87 (2001). https://doi.org/10.1038/83393

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/83393

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing