Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Efficient nonviral transfection of dendritic cells and their use for in vivo immunization

Abstract

Immunization with dendritic cells (DCs) transfected with genes encoding tumor-associated antigens (TAAs) is a highly promising approach to cancer immunotherapy. We have developed a system, using complexes of plasmid DNA expression constructs with the cationic peptide CL22, that transfects human monocyte-derived DCs much more efficiently than alternative nonviral agents. After CL22 transfection, DCs expressing antigens stimulated autologous T cells in vitro and elicited primary immune responses in syngeneic mice, in an antigen-specific manner. Injection of CL22-transfected DCs expressing a TAA, but not DCs pulsed with a TAA-derived peptide, protected mice from lethal challenge with tumor cells in an aggressive model of melanoma. The CL22 system is a fast and efficient alternative to viral vectors for engineering DCs for use in immunotherapy and research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Transfection of hmoDCs with CL22–pEGFP–N1 complexes.
Figure 2: CL22–DNA complexes transfect hmoDC with high efficiency.
Figure 3: After CL22 transfection, EGFP-expressing cells display surface markers characteristic of hmoDCs.
Figure 4: CL22-transfected hmoDCs stimulate antigen-specific T cells in vitro.
Figure 5: CL22-transfected mbmDCs elicit cellular and humoral immune responses in mice.
Figure 6: DCs transfected with CL22–phTRP2 complexes elicit anti-TRP2 cellular immune responses and antitumor responses in mice.

Similar content being viewed by others

References

  1. Romani, N. et al. Proliferating dendritic cell progenitors in human blood. J. Exp. Med. 180, 83–93 ( 1994).

    Article  CAS  PubMed  Google Scholar 

  2. Nestle, F.O. et al. Vaccination of melanoma patients with peptide- or tumour lysate-pulsed dendritic cells. Nat. Med. 4, 328– 332 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Hsu, F.J. et al. Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nat. Med. 2, 52– 58 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Thurner, B. et al. Vaccination with MAGE-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma. J. Exp. Med 190, 1669–1678 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nair, S.K. et al. Induction of primary carcinoembryonic antigen (CEA)-specific cytotoxic T lymphocytes in vitro using human dendritic cells transfected with RNA. Nat. Biotechnol. 16, 364–369 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Zhang, W. et al. Enhanced therapeutic efficacy of tumour RNA-pulsed dendritic cells after genetic modification with lymphotactin. Hum. Gene Ther. 10, 1151–1161 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Ludewig, B. et al. Immunotherapy with dendritic cells directed against tumour antigens shared with normal host cells results in severe autoimmune disease. J. Exp. Med. 191, 795–803 ( 2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kaplan, J.M. et al. Induction of antitumour immunity with dendritic cells transduced with adenovirus vector-encoding endogenous tumour-associated antigens. J. Immunol. 163, 699–707 (1999).

    CAS  PubMed  Google Scholar 

  9. Hung, K. et al. The central role of CD4+ T cells in the antitumour immune response . J. Exp. Med. 188, 2357– 2368 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. De Veerman, M. et al. Retrovirally transduced bone marrow-derived dendritic cells require CD4+ T cell help to elicit protective and therapeutic antitumour immunity. J. Immunol. 162, 144– 151 (1999).

    CAS  PubMed  Google Scholar 

  11. Kalams, S.A. & Walker, B.D. The critical need for CD4 T cell help in maintaining effective cytotoxic T lymphocyte responses . J. Exp. Med. 188, 2199– 2204 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schnell, S., Young, J.W., Houghton, A.N. & Sadelain, M. Retrovirally transduced dendritic cells require CD4+ T cell help to elicit antitumour immunity: implications for clinical use of dendritic cells. J. Immunol. 164, 1243– 1250 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Arthur, J.F. et al. A comparison of gene transfer methods in human dendritic cells. Cancer Gene Ther. 4, 17–25 (1997).

    CAS  PubMed  Google Scholar 

  14. Philip, R. et al. Transgene expression in dendritic cells to induce antigen-specific cytotoxic T cells in healthy donors. Cancer Gene Ther. 5, 236–246 (1998).

    CAS  PubMed  Google Scholar 

  15. DiBrino M., Tsuchida, T., Turner, R.V., Coligan, J.E. & Biddison, W.E. HLA-A1 and HLA-A3 T cell epitopes derived from influenza virus proteins predicted from peptide binding motifs. J. Immunol. 151, 5930– 5935 (1993).

    CAS  PubMed  Google Scholar 

  16. Lalvani. A. et al. Rapid effector function in CD8+ memory T cells. J. Exp. Med. 186, 859–865 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Taylor, P.M., Davey, J., Howland, K., Rothbard, J.B. & Askonas, B.A. Class I MHC molecules rather than other mouse genes dictate influenza epitope recognition by cytotoxic T cells. Immunogenetics 26, 267–272 (1987).

    Article  CAS  PubMed  Google Scholar 

  18. Bouchard, B., Del Marmol, V., Jackson, I.J., Cherif, D. & Dubertret, L. Molecular characterisation of a human tyrosinase-related protein-2 cDNA. Patterns of expression in melanocytic cells. Eur. J. Biochem. 219, 127– 134 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. Okamoto, T. et al. Anti-tyrosinase-related protein-2 immune responses in vitiligo patients and melanoma patients receiving active specific immunotherapy. J. Invest. Dermatol. 111, 1034–1039 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Bloom, M.B. et al. Identification of tyrosinase-related protein 2 as a tumour rejection antigen for the B16 melanoma. J. Exp. Med. 185, 453–459 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yang. Y., Li, Q., Ertl, H.C. & Wilson, J.M. Cellular and humoral immune responses to viral antigens create barriers to lung-directed gene therapy with recombinant adenoviruses. J. Virol. 69, 2004–2015 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Jonuleit, H. et al. Efficient transduction of mature CD83+ dendritic cells using recombinant adenovirus suppressed T cell stimulatory capacity. Gene Ther. 7, 249–254 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  23. Knight, S.C., Iqball, S., Roberts, M.S., Macatonia, S. & Bedford, P.A. Transfer of antigen between dendritic cells in the stimulation of primary T cell proliferation . Eur. J. Immunol. 28, 1636– 1644 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Tüting, T. et al. Dendritic cell-based genetic immunisation in mice with a recombinant adenovirus encoding murine TRP2 induces effective anti-melanoma immunity. J. Gene Med. 1, 400–406 (1999).

    Article  PubMed  Google Scholar 

  25. Overwijk, W.W. et al. Vaccination with a recombinant vaccinia virus encoding a “self” antigen induces autoimmune vitiligo and tumour cell destruction in mice: requirement for CD4+ T lymphocytes. Proc. Natl. Acad. Sci. USA 96, 2982–2987 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  26. Williams, S.G. et al. Repressor titration: a novel system for selection and stable maintenance of recombinant plasmids. Nucleic Acids Res. 26, 2120–2124 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tüting, T., DeLeo, A.B., Lotze, M.T. & Storkus, W.J. Genetically modified bone marrow-derived dendritic cells expressing tumour-associated viral or “self” antigens induce antitumour immunity in vivo. Eur. J. Immunol. 27, 2702–2707 (1997).

    Article  PubMed  Google Scholar 

  28. Felgner P.L. et al. Nomenclature for synthetic gene delivery systems. Hum. Gene Ther. 8, 511–512 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  29. Morgan, S.M., Wilkinson, G.W., Floettmann, E., Blake, N. & Rickinson, A.B. A recombinant adenovirus expressing an Epstein–Barr virus (EBV) target antigen can selectively reactivate rare components of EBV cytotoxic T-lymphocyte memory in vitro. J. Virol. 70, 2394–2402 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Corico, R. et al. (eds.) Current Protocols in Immunology. (Wiley, New York, NY; 2000).

    Google Scholar 

Download references

Acknowledgements

We thank the Quality Control Department, Cobra Therapeutics, for endotoxin testing of plasmid DNA samples, the Manchester Blood Transfusion Service for supplying buffy coats, blood donors at Cobra Therapeutics and the Institute of Cancer Studies, Birmingham University, Yalem Bekele for phlebotomy and plasmid DNA preparation, Dr. T. Hanke for the influenza nucleoprotein gene, and the Bioconjugate Chemistry Department at Cobra Therapeutics for peptide synthesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Mountain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Irvine, A., Trinder, P., Laughton, D. et al. Efficient nonviral transfection of dendritic cells and their use for in vivo immunization. Nat Biotechnol 18, 1273–1278 (2000). https://doi.org/10.1038/82383

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/82383

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing