Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Functional haploinsufficiency of the human homeobox gene MSX2 causes defects in skull ossification

Abstract

The genetic analysis of congenital skull malformations provides insight into normal mechanisms of calvarial osteogenesis1. Enlarged parietal foramina (PFM) are oval defects of the parietal bones caused by deficient ossification around the parietal notch, which is normally obliterated during the fifth fetal month2. PFM are usually asymptomatic, but may be associated with headache, scalp defects and structural or vascular malformations of the brain3,4. Inheritance is frequently autosomal dominant, but no causative mutations have been identified in non-syndromic cases. We describe here heterozygous mutations of the homeobox gene MSX2 (located on 5q34–q35) in three unrelated families with PFM. One is a deletion of approximately 206 kb including the entire gene and the others are intragenic mutations of the DNA-binding homeodomain (RK159-160del and R172H) that predict disruption of critical intramolecular and DNA contacts. Mouse Msx2 protein with either of the homeodomain mutations exhibited more than 85% reduction in binding to an optimal Msx2 DNA-binding site. Our findings contrast with the only described MSX2 homeodomain mutation5 (P148H), associated with craniosynostosis, that binds with enhanced affinity to the same target6. This demonstrates that MSX2 dosage is critical for human skull development and suggests that PFM and craniosynostosis result, respectively, from loss and gain of activity in an MSX2-mediated pathway of calvarial osteogenic differentiation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Skull radiographs from family 1, showing evolution of the phenotype with age.
Figure 2: Identification of MSX2 deletion in family 1.
Figure 3: Mutations of MSX2 in families 2 (left) and 3 (right).
Figure 4: Schematic diagram of MSX2 homeodomain bound to DNA, based on the structure of antennapedia15 and homology modelling of Msx1 (ref. 16).
Figure 5: Binding of full-length mouse Msx2 proteins to an optimum DNA-binding site, analysed by gel shift.

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Mundlos, S. et al. Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia. Cell 89, 773– 779 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Currarino, G. Normal variants and congenital anomalies in the region of the obelion. Am. J. Roentgenol. 127, 487–494 (1976).

    Article  CAS  Google Scholar 

  3. Pang, D. & Lin, A. Symptomatic large parietal foramina . Neurosurgery 11, 33–37 (1982).

    Article  CAS  PubMed  Google Scholar 

  4. Preis, S., Engelbrecht, V. & Lenard, H.-G. Aplasia cutis congenita and enlarged parietal foramina (Catlin marks) in a family. Acta Paediatr. 84, 701–702 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Jabs, E.W. et al. A mutation in the homeodomain of the human MSX2 gene in a family affected with autosomal dominant craniosynostosis Cell 75, 443–450 ( 1993).

    Article  CAS  PubMed  Google Scholar 

  6. Ma, L., Golden, S., Wu, L. & Maxson, R. The molecular basis of Boston-type craniosynostosis: the Pro148–His mutation in the N-terminal arm of the MSX2 homeodomain stabilizes DNA binding without altering nucleotide sequence preferences. Hum. Mol. Genet. 5 , 1915–1920 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Bartsch, O. et al. Delineation of a contiguous gene syndrome with multiple exostoses, enlarged parietal foramina, craniofacial dysostosis, and mental retardation, caused by deletions on the short arm of chromosome 11. Am. J. Hum. Genet. 58, 734–742 ( 1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Wuyts, W. et al. Molecular and clinical examination of an Italian DEFECT 11 family . Eur. J. Hum. Genet. 7, 579– 584 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Wilkie, A.O.M. et al. Saethre-Chotzen syndrome associated with balanced translocations involving 7p21.2: three further families. J. Med. Genet. 32, 174–180 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Johnson, D. et al. A comprehensive screen for TWIST mutations in patients with craniosynostosis identifies a new microdeletion syndrome of chromosome band 7p21.1. Am. J. Hum. Genet. 63, 1282 –1293 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Golabi, M., Carey, J. & Hall, B.D. Parietal foramina clavicular hypoplasia. An autosomal dominant syndrome. Am. J. Dis. Child. 138, 596–599 (1984).

    Article  CAS  PubMed  Google Scholar 

  12. Salamanca, A. et al. Prenatal sonographic appearance of foramina parietalia permagna . Prenat. Diagn. 14, 766– 769 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Kutilek, S., Baxova, A., Bayer, M., Leiska, A. & Kozlowski, K. Foramina parietalia permagna: report of nine cases in one family. J. Paediatr. Child Health 33, 168–170 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Bürglin, T.R. A comprehensive classification of homeobox genes. in Guidebook to the Homeobox Genes (ed. Duboule, D.) 27–71 (Oxford University Press, Oxford, 1994).

    Google Scholar 

  15. Gehring, W.J. et al. Homeodomain-DNA recognition. Cell 78 , 211–223 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Li, H. et al. Homology modeling using simulated annealing of restrained molecular dynamics and conformational search calculations with CONGEN: application in predicting the three-dimensional structure of murine homeodomain Msx-1. Protein Sci. 6, 956–970 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Clarke, N.D. Covariation of residues in the homeodomain sequence family. Protein Sci. 4, 2269–2278 ( 1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Isaac, V.E., Sciavolino, P. & Abate, C. Multiple amino acids determine the DNA binding specificity of the Msx-1 homeodomain. Biochemistry 34, 7127–7134 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Vastardis, H., Karimbux, N., Guthua, S.W., Seidman, J.G. & Seidman, C.E. A human MSX1 homeodomain missense mutation causes selective tooth agenesis. Nature Genet. 13, 417–421 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  20. Hu, G. et al. Haploinsufficiency of MSX1 : a mechanism for selective tooth agenesis. Mol. Cell. Biol. 18, 6044– 6051 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. van den Boogaard, M-J.H., Dorland, M., Beemer, F.A. & Ploos van Amstel, H.K. MSX1 mutation is associated with orofacial clefting and tooth agenesis in humans. Nature Genet 24, 342– 343 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Catron, K.M., Iler, N. & Abate, C. Nucleotides flanking a conserved TAAT core dictate the DNA binding specificity of three murine homeodomain proteins. Mol. Cell. Biol. 13, 2354–2365 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu, Y.-H. et al. Msx2 gene dosage influences the number of proliferative osteogenic cells in growth centers of the developing murine skull: a possible mechanism for MSX2-mediated craniosynostosis in humans. Dev. Biol. 205, 260–274 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Satokata, I. et al. Msx2 deficiency in mice causes pleiotropic defects in bone growth and ectodermal organ function. Nature Genet. 24, 391–395 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Wilkie, A.O.M. The molecular basis of genetic dominance. J. Med. Genet. 31, 89–98 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gripp, K.W. et al. TWIST gene mutation in a patient with radial aplasia and craniosynostosis: further evidence for heterogeneity of Baller-Gerold syndrome. Am. J. Med. Genet. 82, 170– 176 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Stankiewicz, P. et al. The TWIST gene is triplicated in trisomy 7p syndrome. Eur. J. Hum. Genet. 6, 61 (1998).

  28. Dib, C. et al. A comprehensive genetic map of the human genome based on 5,264 microsatellites. Nature 380, 152– 154 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. Hodgkinson, J.E., Davidson, C.L., Beresford, J. & Sharpe, P.T. Expression of a human homeobox-containing gene is regulated by 1,25(OH) 2D3 in bone cells. Biochim. Biophys. Acta 1174, 11–16 (1993).

    Article  CAS  PubMed  Google Scholar 

  30. Ioannou, P.A. & de Jong, P.J. Construction of bacterial artificial chromosome libraries using the modified P1 (PAC) system. in Current Protocols in Human Genetics (eds Dracopoli, N.C. et al.) 5.15.1–5.15.24 (Wiley, New York, 1996 ).

    Google Scholar 

  31. Jaju, R. et al. A new recurrent translocation, t(5;11)(q35;p15.5), associated with del(5q) in childhood acute myeloid leukemia. Blood 94, 773–780 (1999).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank family members for their participation; A. Baxova, S. Kutilek, A. Salamanca, L. Solymosi, H. Urbach and S. White for help with collection of samples; R. Jaju and L. Kearney for FISH analysis; P. Anslow for radiological advice, R. Maas for sharing unpublished data; and S. Robertson for comments on the manuscript. PAC clones were provided by the UK HGMP Resource Centre. This work was funded by a Wellcome Trust Senior Fellowship in Clinical Science (A.O.M.W.) and grants from the NIDCD (R.E.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew O.M. Wilkie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilkie, A., Tang, Z., Elanko, N. et al. Functional haploinsufficiency of the human homeobox gene MSX2 causes defects in skull ossification. Nat Genet 24, 387–390 (2000). https://doi.org/10.1038/74224

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/74224

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing