Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The pathogenesis of familial hypertrophic cardiomyopathy: Early and evolving effects from an α-cardiac myosin heavy chain missense mutation

Abstract

Familial hypertrophic cardiomyopathy (FHC) is a genetic disorder resulting from mutations in genes encoding sarcomeric proteins1,2. This typically induces hyperdynamic ejection3, impaired relaxation, delayed early filling4, myocyte disarray and fibrosis, and increased chamber end-systolic stiffness5,6. To better understand the disease pathogenesis, early (primary) abnormalities must be distinguished from evolving responses to the genetic defect. We did in vivo analysis using a mouse model of FHC with an Arg403Gln α-cardiac myosin heavy chain missense mutation7, and used newly developed methods for assessing in situ pressure–volume relations8. Hearts of young mutant mice (6 weeks old), which show no chamber morphologic or gross histologic abnormalities, had altered contraction kinetics, with considerably delayed pressure relaxation and chamber filling, yet accelerated systolic pressure rise. Older mutant mice (20 weeks old), which develop fiber disarray and fibrosis, had diastolic and systolic kinetic changes similar to if not slightly less than those of younger mice. However, the hearts of older mutant mice also showed hyperdynamic contraction, with increased end-systolic chamber stiffness, outflow tract pressure gradients and a lower cardiac index due to reduced chamber filling; all 'hallmarks' of human disease. These data provide new insights into the temporal evolution of FHC. Such data may help direct new therapeutic strategies to diminish disease progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: a, Baseline in vivo tracings of left ventricular (LV) pressure (upper) and the first derivative of ventricular pressure (dP/dt; lower) for young and older mice in both groups.
Figure 2: a, Baseline pressure–volume loops from control and mutant mice.

Similar content being viewed by others

References

  1. Seidman, C.E. & Seidman, J.G. in Molecular Cardiovascular Medicine (ed. E. Haber, E.) 193–210 (Scientific American Press, New York, 1995).

    Google Scholar 

  2. Watkins, H. et al. Characteristics and prognostic implications of myosin missense mutations in familial hypertrophic cardiomyopathy. N. Engl. J. Med. 326, 1108–1114 (1992).

    Article  CAS  Google Scholar 

  3. Wigle, E.D., Rakowski, H., Kimball, B.P. & Williams, W.G. Hypertrophic cardiomyopathy: Clinical spectrum and treatment. Circulation 92, 1680–1692 (1995).

    Article  CAS  Google Scholar 

  4. Bonow, R.O. et al. Effects of verapamil on left ventricular systolic and diastolic function in patients with hypertrophic cardiomyopathy: pressure-volume analysis with a nonimaging scintillation probe. Circulation 68, 1062–1073 (1983).

    Article  CAS  Google Scholar 

  5. Pak, P.H., Maughan, W.L., Baughman, K.L. & Kass, D.A. Marked discordance between dynamic and passive diastolic pressure-volume relations in idiopathic hypertrophic cardiomyopathy. Circulation 94, 52–60 (1996).

    Article  CAS  Google Scholar 

  6. Pak, P.H., Maughan, W.L., Baughman, K.L., Caval, R.S. & Kass, D.A. Mechanism of acute mechanical benefit from VDD pacing in hypertrophied heart: Similarity of responses in hypertrophic cardiomyopathy and hypertensive heart disease. Circulation 98, 242–248 (1998).

    Article  CAS  Google Scholar 

  7. Geisterfer-Lowrance, A.T. et al. A mouse model of familial hypertrophic cardiomyopathy. Science 272, 731–744 ( 1996).

    Article  CAS  Google Scholar 

  8. Georgakopoulos, D. et al. In vivo murine left ventricular pressure-volume relations by miniaturized conductance-micromanometry. Am. J. Physiol. 274(4 Pt 2), H1416–H1422 ( 1998).

    CAS  PubMed  Google Scholar 

  9. Shen, Y-T., Cervoni, P., Claus, T. & Vatner, S.F. Differences in β3-adrenergic receptor cardiovascular regulation in conscious primates, rats and dogs. J. Pharmacol. Exp. Ther. 278, 1435–1443 (1996).

    CAS  PubMed  Google Scholar 

  10. Suga, H. & Sagawa, K. Instantaneous pressure-volume relationships and their ratio in the excised, supported canine left ventricle. Circ. Res. 35, 117–128 ( 1974).

    Article  CAS  Google Scholar 

  11. Spindler, M. et al. Diastolic dysfunction and altered energetics in the αMHC403/+ mouse model of familial hpertrophic cardiomyopathy. J. Clin. Invest. 101, 1775–1783 (1998).

    Article  CAS  Google Scholar 

  12. Kapuku, G.K. et al. Impaired left ventricular filling in borderline hypertensive patients without cardiac structural changes. Am. Heart J. 125, 1710–1716 (1993).

    Article  CAS  Google Scholar 

  13. Palatini, P. et al. Structural abnormalities and not diastolic dysfunction are the earliest left ventricular changes in hypertension. Am. J. Hypertens. 11, 147–154 ( 1998).

    Article  CAS  Google Scholar 

  14. Tardiff, J.C. et al. A truncated cardiac troponin T molecule in transgenic mice suggests multiple cellular mechanisms for familial hypertrophic cardiomyopathy. J. Clin. Invest. 107, 2800– 2811 (1998).

    Article  Google Scholar 

  15. Oberst, L. et al. Dominant-negative effect of a mutant cardiac troponin T on cardiac structure and function in transgenic mice. J. Clin. Invest. 102,1498–1505 ( 1998).

    Article  CAS  Google Scholar 

  16. Gottshall, K.R. et al. Ras-dependent pathways induce obstructive hypertrophy in echo-selected transgenic mice. Proc. Natl. Acad. Sci. USA 94(9), 4710–4715 (1997).

    Article  CAS  Google Scholar 

  17. Milano, C.A. et al. Enhanced myocardial function in transgenic mice overexpressing the beta 2-adrenergic receptor. Science 264, 582–586 (1994).

    Article  CAS  Google Scholar 

  18. Grupp, I.L. et al. Overexpression of alpha-1 adrenergic receptor induces left ventricular dysfunction in the absence of hypertrophy. Am. J. Physiol. 275(4 Pt 2), H1338–H1350 (1998).

    CAS  PubMed  Google Scholar 

  19. Lorenz, J.N. & Kranias, E.G. Regulatory effects of phospholamban on cardiac function in intact mice. Am. J. Physiol. 273, H2826–H2831 (1997).

    CAS  PubMed  Google Scholar 

  20. Maughan, D.W. et al. Altered crossbridge kinetics of permeabilized myocardium from a mouse model of Arg403Gln familial hypertrophic cardiomyopathy. Circulation 98, I–625 ( 1998).

    Google Scholar 

  21. Rayment, I. et al. Structure of the actin-myosin complex and its implications for muscle contraction. Science 261, 58– 65 (1993).

    Article  CAS  Google Scholar 

  22. Sweeney, H.L. et al. Heterologous expression of a cardiomyopathic myosin that is defective in its actin interaction. J. Biol. Chem. 269, 1603–1605 (1994).

    CAS  PubMed  Google Scholar 

  23. Sutton, M.St.J. & Epstein, J.A. Hypertrophic cardiomyopathy: Beyond the sarcomere . N. Engl. J. Med. 338, 1303–1304 (1998).

    Article  Google Scholar 

  24. Welch, W.J. et al. Validation of miniature ultrasonic transit-time flow probes for measurement of renal blood flow in rats. Am. J. Physiol. 268, F175–178 (1995).

    CAS  PubMed  Google Scholar 

  25. Wen C. et al. Validation of transonic small animal flowmeter for measurement of cardiac output and regional blood flow in the rat. J. Cardiovasc. Pharm. 27, 482–486 ( 1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Kass.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Georgakopoulos, D., Christe, M., Giewat, M. et al. The pathogenesis of familial hypertrophic cardiomyopathy: Early and evolving effects from an α-cardiac myosin heavy chain missense mutation. Nat Med 5, 327–330 (1999). https://doi.org/10.1038/6549

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/6549

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing