Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The melting curve of iron at the pressures of the Earth's core from ab initio calculations

Abstract

The solid inner core of the Earth and the liquid outer core consist mainly of iron1 so that knowledge of the high-pressure thermodynamic properties of iron is important for understanding the Earth's deep interior. An accurate knowledge of the melting properties of iron is particularly important, as the temperature distribution in the core is relatively uncertain2,3,4 and a reliable estimate of the melting temperature of iron at the pressure of the inner-core boundary would put a much-needed constraint on core temperatures. Here we used ab initio methods to compute the free energies of both solid and liquid iron, and we argue that the resulting theoretical melting curve competes in accuracy with those obtained from high-pressure experiments. Our results give a melting temperature of iron of 6,700 ± 600 K at the pressure of the inner-core boundary, consistent with some of the experimental measurements. Our entirely ab initio methods should also be applicable to many other materials and problems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The ab initio melting curve of iron compared with experimental results.

Similar content being viewed by others

References

  1. Poirier,J. P. Introduction to the Physics of the Earth's Interior (Cambridge Univ. Press, 1991).

    Google Scholar 

  2. Anderson,O. L. & Duba,A. Experimental melting curve of iron revisited. J. Geophys. Res. 102, 22659– 22669 (1997).

    Article  ADS  Google Scholar 

  3. Shen,G., Mao,H., Hemley,R. J., Duffy,T. S. & Rivers, M. L. Melting and crystal structure of iron at high pressures and temperatures. Geophys. Res. Lett. 25, 373–376 (1998).

    Article  ADS  CAS  Google Scholar 

  4. Belonoshko,A. B. & Ahuja,R. Embedded-atom molecular dynamics study of iron melting. Phys. Earth Planet. Inter. 102, 171–184 (1997).

    Article  ADS  CAS  Google Scholar 

  5. Gillan,M. J. The virtual matter laboratory. Contemp. Phys. 38, 115–134 (1997).

    Article  ADS  CAS  Google Scholar 

  6. Car,R. & Parrinello,M. Unified approach for molecular dynamics and density functional theory. Phys. Rev. Lett. 55, 2471–2474 (1985).

    Article  ADS  CAS  Google Scholar 

  7. Perdew,J. P., Chevary,J. A., Vosko,S. H., Jackson,K. A., Pederson,M. R., Singh,D. J. & Fiolhais,C. Atoms, molecules, solids and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671–6687 (1992).

    Article  ADS  CAS  Google Scholar 

  8. Stixrude,L., Cohen,R. E. & Singh,D. J. Iron at high pressure: Linearized-augmented-plane-wave computations in the generalized-gradient approximation. Phys. Rev. B 50, 6442–6445 ( 1994).

    Article  ADS  CAS  Google Scholar 

  9. Vočadlo,L., Brodholt,J., Alf,D., Gillan,M. J. & Price,G. D. Ab initio free energy calculations on the polymorphs of iron at core conditions. Phys. Earth Planet. Inter. (in the press).

  10. Sšderlind,P., Moriarty,J. A. & Wills, J. M. First-principles theory of iron up to earth-core pressures: Structural, vibrational and elastic properties. Phys. Rev. B 53, 14063–14072 ( 1996).

    Article  ADS  Google Scholar 

  11. Vočadlo,L., de Wijs,G. A., Kresse,G., Gillan,M. & Price,G. D. First-principles calculations on crystalline and liquid iron at Earth's core conditions. Faraday Discuss. 106 , 205–217 (1997).

    Article  ADS  Google Scholar 

  12. Wasserman,E., Stixrude,L. & Cohen,R. E. Thermal properties of iron at high pressures and temperatures. Phys. Rev. B 53, 8296– 8309 (1996).

    Article  ADS  CAS  Google Scholar 

  13. Stixrude,L., Wasserman,E. & Cohen, R. E. Composition and temperature of the Earth's inner core. J. Geophys. Res. 102, 24729– 24739 (1997).

    Article  ADS  CAS  Google Scholar 

  14. de Wijs,G. A. et al. The viscosity of liquid iron at the physical conditions of the Earth's core. Nature 392, 805– 807 (1998).

    Article  ADS  CAS  Google Scholar 

  15. Alf,D. & Gillan,M. J. First-principles simulations of liquid Fe–S under Earth's core conditions. Phys. Rev. B 58, 8248–8256 (1998).

    Article  ADS  Google Scholar 

  16. Alf,D., Price,G. D. & Gillan, M. J. Oxygen in the Earth's core: A first-principles study. Phys. Earth Planet. Inter. 110, 191– 210 (1999).

    Article  ADS  Google Scholar 

  17. Blšchl,P. E. The projector augmented wave method. Phys. Rev. B 50 , 17953–17979 (1994).

    Article  ADS  Google Scholar 

  18. Kresse,G. & Joubert,D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59 , 1758–1775 (1999).

    Article  ADS  CAS  Google Scholar 

  19. Kresse,G. & FurthmŸller,J. Efficient iterative schemes for ab-initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169– 11186 (1996).

    Article  ADS  CAS  Google Scholar 

  20. Sugino,O. & Car,R. Ab-initio molecular-dynamics study of first-order phase transitions—melting of silicon. Phys. Rev. Lett. 74, 1823–1826 (1995).

    Article  ADS  CAS  Google Scholar 

  21. de Wijs,G. A., Kresse,G. & Gillan,M. J. First-order phase transitions by first-principles free-energy calculations: The melting of Al. Phys. Rev. B 57, 8223–8334 (1998).

    Article  ADS  CAS  Google Scholar 

  22. Kresse,G., FurthmŸller,J. & Hafner, J. Ab-initio force-constant approach to phonon dispersion relations of diamond and graphite. Europhys. Lett. 32, 729–734 (1995).

    Article  ADS  CAS  Google Scholar 

  23. Frenkel,D. & Smit,B. Understanding Molecular Simulation Ch. 4 (Academic, New York, 1996).

    MATH  Google Scholar 

  24. Boehler,R. Temperature in the Earth's core from melting-point measurements of iron at high static pressures. Nature 363, 534– 536 (1993).

    Article  ADS  CAS  Google Scholar 

  25. Williams,Q., Jeanloz,R., Bass,J. D., Svendesen,B. & Ahrens, T. J. The melting curve of iron to 250 gigapascals: A constraint on the temperature at Earth's center. Science 286, 181–182 (1987).

    Article  ADS  Google Scholar 

  26. Yoo,C. S., Holmes,N. C., Ross,M., Webb,D. J. & Pike,C. Shock temperatures and melting of iron at Earth core conditions. Phys. Rev. Lett. 70, 3931–3934 (1993).

    Article  ADS  CAS  Google Scholar 

  27. Brown,J. M. & McQueen,R. G. Phase transitions, GrŸneisen parameter, and elasticity for shocked iron between 77 and 400 GPa. J. Geophys. Res. 91, 7485– 7494 (1986).

    Article  ADS  Google Scholar 

  28. Poirier, J.-P. & Shankland,T. J. Dislocation melting of iron and the temperature of the inner core boundary, revisited. Geophys. J. Int. 115, 147–151 ( 1993).

    Article  ADS  Google Scholar 

  29. Andrault,D., Fiquet,G., Kunz, M., Visocekas, F. & HŠusermann, D. The orthorhombic structure of iron: An in situ study at high-temperature and high-pressure. Science 278, 831–834 (1997).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

The calculations were run on the Cray T3E machines at Manchester CSAR Centre and the Edinburgh Parallel Computer Centre. We thank L. Vočadlo for discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Alfè.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alfè, D., Gillan, M. & Price, G. The melting curve of iron at the pressures of the Earth's core from ab initio calculations. Nature 401, 462–464 (1999). https://doi.org/10.1038/46758

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/46758

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing