Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Bandgap modulation of carbon nanotubes by encapsulated metallofullerenes

Abstract

Motivated by the technical and economic difficulties in further miniaturizing silicon-based transistors with the present fabrication technologies, there is a strong effort to develop alternative electronic devices, based, for example, on single molecules1,2. Recently, carbon nanotubes have been successfully used for nanometre-sized devices such as diodes3,4, transistors5,6, and random access memory cells7. Such nanotube devices are usually very long compared to silicon-based transistors. Here we report a method for dividing a semiconductor nanotube into multiple quantum dots with lengths of about 10 nm by inserting Gd@C82 endohedral fullerenes. The spatial modulation of the nanotube electronic bandgap is observed with a low-temperature scanning tunnelling microscope. We find that a bandgap of 0.5 eV is narrowed down to 0.1 eV at sites where endohedral metallofullerenes are inserted. This change in bandgap can be explained by local elastic strain and charge transfer at metallofullerene sites. This technique for fabricating an array of quantum dots could be used for nano-electronics8 and nano-optoelectronics9.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effect of inserted Gd metallofullerenes (GdMFs) on the topography and band structure of a single-walled nanotube (SWNT).
Figure 2: Bandgap modulation of a GdMF-SWNT by encapsulated GdMFs.
Figure 3: Energy-resolved dI/dV images of a GdMF-SWNT.

Similar content being viewed by others

References

  1. Aviram, A. & Ratner, M. (eds) Molecular Electronics: Science and Technology. (Annals of the New York Academy of Sciences, Vol. 852, New York, 1998).

    Google Scholar 

  2. Reed, M. A. & Tour, J. M. Computing with molecules. Sci. Am. 282(6), 86–93 (June, 2000).

    Article  CAS  Google Scholar 

  3. Yao, Z., Postma, H. W. Ch., Balents, L. & Dekker, C. Carbon nanotube intramolecular junctions. Nature 402, 273–276 (1999).

    Article  ADS  CAS  Google Scholar 

  4. Zhou, C., Kong, J., Yenilmez, E. & Dai, H. Modulated chemical doping of individual carbon nanotubes. Science 290, 1552–1555 (2000).

    Article  ADS  CAS  Google Scholar 

  5. Tan, S. J., Verschueren, A. R. M. & Dekker, C. Room-temperature transistor based on a single carbon nanotube. Nature 393, 49–52 (1998).

    Article  ADS  Google Scholar 

  6. Postma, H. W. Ch., Tijs, T., Yao, Z., Grifoni, M. & Dekker, C. Carbon nanotube single-electron transistors at room temperature. Science 293, 76–79 (2001).

    Article  ADS  CAS  Google Scholar 

  7. Rueckes, T. et al. Carbon nanotube-based nonvolatile random access memory for molecular computing. Science 289, 94–97 (2000).

    Article  ADS  CAS  Google Scholar 

  8. Toth, G. & Lent, C. S. Quantum computing with quantum-dot cellular automata. Phys. Rev. A 63, 052315–052323 (2001).

    Article  ADS  Google Scholar 

  9. Faist, J. et al. Continuous wave operation of a vertical transition quantum cascade laser above T = 80 K. Appl. Phys. Lett. 67, 3057–3059 (1995).

    Article  ADS  CAS  Google Scholar 

  10. Iijima, S. & Ichihashi, T. Single-shell carbon nanotubes of 1-nm diameter. Nature 363, 603 (1993).

    Article  ADS  CAS  Google Scholar 

  11. Shinohara, H. Endohedral metallofullerenes. Rep. Prog. Phys. 63, 843–892 (2000).

    Article  ADS  CAS  Google Scholar 

  12. Suenaga, K., Iijima, S., Kato, H. & Shinohara, H. Fine structure analysis of Gd M45 near-edge EELS on the valence state of Gd@C82 microcrystals. Phys. Rev. B 62, 1627–1630 (2000).

    Article  ADS  CAS  Google Scholar 

  13. Smith, B. W., Monthioux, M. & Luzzi, D. E. Encapsulated C60 in carbon nanotubes. Nature 396, 323–324 (1998).

    Article  CAS  Google Scholar 

  14. Suenaga, K. et al. Element-selective single atom imaging. Science 290, 2280–2282 (2000).

    Article  ADS  CAS  Google Scholar 

  15. Hirahara, K. et al. One-dimensional metallofullerenes crystal generated inside single-walled carbon nanotube. Phys. Rev. Lett. 85, 5384–5387 (2000).

    Article  ADS  CAS  Google Scholar 

  16. Smith, B. W., Luzzi, D. E. & Achiba, Y. Tumbling atoms and evidence for charge transfer in La2@C80@SWNT. Chem. Phys. Lett. 331, 137–142 (2000).

    Article  ADS  CAS  Google Scholar 

  17. Okada, S., Saito, S. & Oshiyama, A. Energetics and electronic structures of encapsulated C60 in a carbon nanotube. Phys. Rev. Lett. 86, 3835–3838 (2001).

    Article  ADS  CAS  Google Scholar 

  18. Bandow, S. et al. Smallest limit of tube diameters for encasing of particular fullerenes determined by radial breathing mode Raman scattering. Chem. Phys. Lett. 347, 23–28 (2001).

    Article  ADS  CAS  Google Scholar 

  19. Yang, L. & Han, J. Electronic structure of deformed carbon nanotubes. Phys. Rev. Lett. 85, 154–157 (2000).

    Article  ADS  CAS  Google Scholar 

  20. Venema, L. C. et al. Imaging electron wave functions of quantized energy levels in carbon nanotubes. Science 283, 52–55 (1999).

    Article  ADS  CAS  Google Scholar 

  21. Lemay, S. G. et al. Two-dimensional imaging of electronic wavefunctions in carbon nanotubes. Nature 412, 617–620 (2001).

    Article  ADS  CAS  Google Scholar 

  22. Kim, H., Lee, J., Kahng, S.-J. & Kuk, Y. Spatial modulation of conduction and valence band edges around defects. Phys. Rev. Lett. (submitted).

  23. Hornbaker, D. J., Kahng, S.-J., Misra, S. & Yazdani, A. Pseudo gaps and defect states in carbon nanotubes. Proc. 11th Int. Conf. on Scanning Tunneling Microscopy/Spectroscopy Related Techniques 104 (National Research Council, Vancouver, Canada, 2001).

Download references

Acknowledgements

We thank J.-Y. Park for his LTSTM design, Y. J. Song and H. S. Suh for experimental assistance, and J. J. Yu and S. W. Hwang for discussions. This work was supported by the Korean Ministry of Science and Technology through Creative Research Initiatives Program and the Future Program on New Carbon Nano-Materials by the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Kuk.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J., Kim, H., Kahng, SJ. et al. Bandgap modulation of carbon nanotubes by encapsulated metallofullerenes. Nature 415, 1005–1008 (2002). https://doi.org/10.1038/4151005a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/4151005a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing