Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

P-type electrical conduction in transparent thin films of CuAlO2

Abstract

Optically transparent oxides tend to be electrical insulators, by virtue of their large electronic bandgap (3.1 eV). The most notable exceptions are doped versions of the oxides In2O3, SnO2 and ZnO—all n-type (electron) conductors—which are widely used as the transparent electrodes in flat-panel displays1,2. On the other hand, no transparent oxide exhibiting high p-type (hole) conductivity is known to exist, whereas such materials could open the way to a range of novel applications. For example, a combination of the two types of transparent conductor in the form of a pn junction could lead to a ‘functional’ window that transmits visible light yet generates electricity in response to the absorption of ultraviolet photons. Here we describe a strategy for identifying oxide materials that should combine p-type conductivity with good optical transparency. We illustrate the potential of this approach by reporting the properties of thin films of CuAlO2, a transparent oxide having room-temperature p-type conductivity up to 1 S cm−1. Although the conductivity of our candidate material is significantly lower than that observed for the best n-type conducting oxides, it is sufficient for some applications, and demonstrates that the development of transparent p-type conductors is not an insurmountable goal.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystal structure of CuAlO2 delafossite consisting of stacked layers of –O–Al–O–Cu–O–.
Figure 2: X-ray powder diffraction patterns of CuAlO2 delafossites.
Figure 3: Transmittance spectra of CuAlO2 thin film.
Figure 4: Temperature dependence of electrical conductivity for the CuAlO2 thin film.

Similar content being viewed by others

References

  1. Hamberg, I. & Granqvist, C. G. Evaporated Sn-doped In2O3films: basic optical properties and applications to energy-efficient windows. J. Appl. Phys. 60, R123–R159 (1986).

    Article  CAS  ADS  Google Scholar 

  2. Chopra, K. L., Major, S. & Pandya, D. K. Transparent conductors—A status review. Thin Solid Films 102, 1–46 (1983).

    Article  CAS  ADS  Google Scholar 

  3. Ueda, N. et al. New oxide phase with wide band gap and high electroconductivity, MgIn2O4. Appl. Phys. Lett. 61, 1954–1955 (1992).

    Article  CAS  ADS  Google Scholar 

  4. Kawazoe, H. et al. Generation of electron carriers in insulating thin film of MgIn2O4spinel by Li+ implantation. J. Appl. Phys. 76, 7935–7941 (1994).

    Article  CAS  ADS  Google Scholar 

  5. Cava, R. J. et al. GaInO3: A new transparent conducting oxide. Appl. Phys. Lett. 64, 2071–2072 (1994).

    Article  CAS  ADS  Google Scholar 

  6. Seager, C. H., McIntyre, D. C., Warren, W. L. & Tuttle, B. A. Charge trapping and device behavior in ferroelectric memories. Appl. Phys. Lett. 68, 2660–2662 (1996).

    Article  CAS  ADS  Google Scholar 

  7. Prins, M. W. J. et al. Aferroelectric transparent thin-film transistor. Appl. Phys. Lett. 68, 3650–3652 (1996).

    Article  CAS  ADS  Google Scholar 

  8. Hayashi, M. & Katsuki, K. Absorption spectrum of cuprous oxide. J. Phys. Soc. Jpn 5, 380–381 (1950).

    Article  ADS  Google Scholar 

  9. Kleinman, L. & Mednick, K. Self-consistent energy band of Cu2O. Phys. Rev. B 21, 1549–1553 (1980).

    Article  CAS  ADS  Google Scholar 

  10. Hahn, H. & Lorent, C. Versuche zur Darstellung ternarer Oxyde des Aluminiums, Galliums und Indiums mit einwertigem Kupfer und Silber. Z. Anorg. Allg. Chem. 279, 281–288 (1955).

    Article  CAS  Google Scholar 

  11. Shannon, R. D., Rogers, D. B. & Prewitt, C. T. Chemistry of noble metal oxide. 1. Syntheses and properties of ABO2delafossite compounds. Inorg. Chem. 10, 713–718 (1971).

    Article  CAS  Google Scholar 

  12. Ishiguro, T., Kitazawa, A., Mizutani, N. & Kato, M. Single-crystal growth and crystal structure refinement of CuAlO2. J. Solid State Chem. 40, 170–174 (1981).

    Article  CAS  ADS  Google Scholar 

  13. Ishiguro, T., Ishizawa, N., Mizutani, N. & Kato, M. Charge-density distribution in crystals of CuAlO2with ds hybridization. Acta Cryst. B39, 564–569 (1983).

    Article  CAS  Google Scholar 

  14. Benko, F. A. & Koffyberg, F. P. Opto-Electronic Properties of CuAlO2. J. Phys. Chem. Solids 45, 57–59 (1984).

    Article  CAS  ADS  Google Scholar 

  15. Porat, O. & Riess, I. Defect chemistry of Cu2−yO at elevated temperatures. Part 2. Electrical conductivity, thermoelectric power and charged point defects. Solid State Ionics 81, 29–41 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Kawazoe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawazoe, H., Yasukawa, M., Hyodo, H. et al. P-type electrical conduction in transparent thin films of CuAlO2. Nature 389, 939–942 (1997). https://doi.org/10.1038/40087

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/40087

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing