Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

High-energy ions produced in explosions of superheated atomic clusters

Abstract

Efficient conversion of electromagnetic energy to particle energy is of fundamental importance in many areas of physics. A promising avenue for producing matter with unprecedented energy densities is by heating atomic clusters, an intermediate form of matter between molecules and solids1, with high-intensity, ultra-short light pulses2–4. Studies of noble-gas clusters heated with high-intensity (>1016Wcm–2) laser pulses indicate that a highly ionized, very high temperature micro-plasma is produced. The explosion of these superheated clusters ejects ions with substantial kinetic energy3–5. Here we report the direct measurement of the ion energy distributions resulting from these explosions. We find, in the case of laser-heated xenon clusters, that such explosions produce xenon ions with kinetic energies up to 1 MeV. This energy is four orders of magnitude higher than that achieved in the Coulomb explosion of small molecules6, indicating a fundamental difference in the nature of intense laser–matter interactions between molecules and clusters. Moreover, it demonstrates that access to an extremely high temperature state of matter is now possible with small-scale lasers.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Castleman, A. W. & Keesee, R. G. Gas-phase clusters: spanning the states of matter. Science 241, 36–42 (1988).

    Article  ADS  CAS  Google Scholar 

  2. McPherson, A., Thompson, B. D., Borisov, A. B., Boyer, K. & Rhodes, C. K. Multiphoton-induced X-ray emission at 4–5 keV from Xe atoms with multiple core vacancies. Nature 370, 631–634 (1994).

    Article  ADS  CAS  Google Scholar 

  3. Ditmire, T., Donnelly, T., Falcone, R. W. & Perry, M. D. Strong X-ray emission from high temperature plasmas produced by intense irradiation of clusters. Phys. Rev. Lett. 75, 3122–3125 (1995).

    Article  ADS  CAS  Google Scholar 

  4. Shao, Y. L. et al. Multi-keV Electron generation in the interaction of intense laser pulses with Xe clusters. Phys. Rev. Lett. 77, 3343–3346 (1996).

    Article  ADS  CAS  Google Scholar 

  5. Ditmire, T., Donnelly, T., Rubenchik, A. M., Falcone, R. W. & Perry, M. D. The interaction of intense laser pulses with atomic clusters. Phys. Rev. A 53, 3379–3402 (1996).

    Article  ADS  CAS  Google Scholar 

  6. Cornaggia, C., Schmidt, M. & Normand, D. Coulomb explosion of CO2 in an intense femtosecond laser field. J. Phys. B. 27, L123–L130 (1994).

    Article  ADS  CAS  Google Scholar 

  7. Perry, M. D. & Mourou, G. Terawatt to petawatt subpicosecond lasers. Science 264, 917–924 (1994).

    Article  ADS  CAS  Google Scholar 

  8. Augst, S., Meyerhofer, D. D., Strickland, D. & Chin, S. L. Laser ionization of noble gases by coulomb-barrier suppression. J. Opt. Soc. B 8, 858–867 (1991).

    Article  ADS  CAS  Google Scholar 

  9. Codling, K. & Frasinski, L. J. Coulomb explosion of simple molecules in intense laser fields. Contemp. Phys. 35, 243–255 (1994).

    Article  ADS  CAS  Google Scholar 

  10. Murnane, M. M., Kapteyn, H. C., Rosen, M. D. & Falcone, R. W. Ultrafast X-ray pulses from laser-produced plasmas. Science 251, 531–536 (1991).

    Article  ADS  CAS  Google Scholar 

  11. McPherson, A. et al. Multiphoton induced X-ray emission from Kr clusters on M-shell and L-shell transitions. Phys. Rev. Lett. 72, 1810–1813 (1994).

    Article  ADS  CAS  Google Scholar 

  12. Purnell, J., Snyder, E. M., Wei, S. & Castleman, A. W. Ultrafast laser-induced coulomb explosion of clusters with high charge states. Chem. Phys. Lett. 229, 333–339 (1994).

    Article  ADS  CAS  Google Scholar 

  13. Gordon, S. P., Donnelly, T., Sullivan, A., Hamster, H. & Falcone, R. W. X-Rays from microstructured targets heated by femtosecond lasers. Opt. Lett. 19, 484–486 (1994).

    Article  ADS  CAS  Google Scholar 

  14. Shepherd, R. et al. Characterization of short pulse laser-produced plasmas. J. Quant. Spectrosc. Radiat. Transfer 51, 357–360 (1994).

    Article  ADS  CAS  Google Scholar 

  15. Brégnacac, J. & Connerade, J. P. The giant resonance in atoms and clusters. J. Phys. B. 27, 3795–3828 (1994).

    Article  ADS  Google Scholar 

  16. Nagata, T., Hirokawa, J. & Kondo, T. Photodissociation of Ar+2 cluster ions. Chem. Phys. Lett. 176, 526–528 (1991).

    Article  ADS  CAS  Google Scholar 

  17. Fraser, D. J. & Hutchinson, M. H. R. High intensity titanium-doped sapphire laser. J. Mod. Opt. 43, 1055–1062 (1996).

    Article  ADS  CAS  Google Scholar 

  18. Strickland, D. T., Beaudoin, Y., Dietrich, P. & Corkum, P. B. Optical studies of intertially confined molecular iodine ions. Phys. Rev. Lett. 68, 2755–2758 (1992).

    Article  ADS  CAS  Google Scholar 

  19. Snyder, E. M., Buzza, S. A. & Castleman, A. W. Intense field-matter interactions: multiple ionization of clusters. Phys. Rev. Lett. 77, 3347–3350 (1996).

    Article  ADS  CAS  Google Scholar 

  20. Gitomer, S. J. et al. Fast ions and hot electrons in the laser-plasma interaction. Phys. Fluids 29, 2679–2688 (1986).

    Article  ADS  CAS  Google Scholar 

  21. Decoste, R. & Ripin, B. H. High-energy expansion in laser plasma interactions. Phys. Rev. Lett. 40, 34–37 (1978).

    Article  ADS  CAS  Google Scholar 

  22. Wickens, L. M. & Allen, J. E. Free expansion of a plasma with two electron temperatures. J. Plasma Phys. 22, 167–185 (1979).

    Article  ADS  Google Scholar 

  23. Meyerhofer, D. D. et al. Resonance absorption in high-intensity contrast, picosecond laser-plasma interactions. Phys. Fluids B 5, 2584–2588 (1993).

    Article  CAS  Google Scholar 

  24. Perry, M. D., Darrow, C., Coverdale, C. & Crane, J. K. Measurement of the local electron density by means of stimulated Raman scattering in a laser produced gas-jet plasma. Opt. Lett. 17, 523–535 (1992).

    Article  ADS  CAS  Google Scholar 

  25. Ditmire, T., Smith, R. A., Tisch, J. W. G. & Hutchinson, M. H. R. Absorption of intense laser pulses by gases of atomic clusters. Phys. Rev. Lett. (submitted).

  26. Ditmire, T., Gumbrell, E. T., Smith, R. A., Mountford, L. & Hutchinson, M. H. R. Supersonic ionization wave driven by radiation transport in a short-pulse laser-produced plasma. Phys. Rev. Lett. 77, 498–501 (1996).

    Article  ADS  CAS  Google Scholar 

  27. Rose, S. J. High-power laser-produced plasmas and astrophysics. Laser Part. Beams 9, 869–880 (1991).

    Article  ADS  CAS  Google Scholar 

  28. Lindl, J., McCrory, R. L. & Campbell, E. M. Progress toward ignition and burn propagation in inertial confinement fusion. Phys. Today 45, 32–40 (1992).

    Article  CAS  Google Scholar 

  29. Teller, E. Fusion 4–12 (Academic, New York, 1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ditmire, T., Tisch, J., Springate, E. et al. High-energy ions produced in explosions of superheated atomic clusters. Nature 386, 54–56 (1997). https://doi.org/10.1038/386054a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/386054a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing