Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Role for DNA methylation in genomic imprinting

Abstract

THE paternal and maternal genomes are not equivalent and both are required for mammalian development1,2. The difference between the parental genomes is believed to be due to gamete-specific differential modification, a process known as genomic imprinting. The study of transgene methylation has shown that methylation patterns can be inherited in a parent-of-origin-specific manner3–7, suggesting that DNA methylation may play a role in genomic imprinting. The functional significance of DNA methylation in genomic imprinting was strengthened by the recent finding that CpG islands (or sites) in three imprinted genes, H19, insulin-like growth factor 2 (Igf-2), and lgf-2 receptor (Igf-2r), are differentially methylated depending on their parental origin8–12. We have examined the expression of these three imprinted genes in mutant mice that are deficient in DNA methyltransferase activity13. We report here that expression of all three genes was affected in mutant embryos: the normally silent paternal allele of the HI9 gene was activated, whereas the normally active paternal allele of the Igf-2 gene and the active maternal allele of theIgf-2r gene were repressed. Our results demonstrate that a normal level of DNA methylation is required for controlling differential expression of the paternal and maternal alleles of imprinted genes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Surani, M. A. H., Barton, S. C. & Norris, M. L. Nature 308, 548–550 (1984).

    Article  ADS  CAS  Google Scholar 

  2. McGrath, J. & Solter, D. Cell 37, 179–183 (1984).

    Article  CAS  Google Scholar 

  3. Reik, W., Collick, A., Norris, M. L., Barton, S. C. & Surani, M. A. Nature 328, 248–251 (1987).

    Article  ADS  CAS  Google Scholar 

  4. Sapienza, C., Paterson, A. C., Rossant, J. & Balling, R. Nature 328, 251–254 (1987).

    Article  ADS  CAS  Google Scholar 

  5. Swain, J. L., Stewart, T. A. & Leder, P. Cell 50, 719–727 (1987).

    Article  CAS  Google Scholar 

  6. Hadchouel, M., Farza, H., Simon, D., Tiollais, P. & Pourcel C. Nature 329, 454–456 (1987).

    Article  ADS  CAS  Google Scholar 

  7. Sasaki, H. J. et al. Development 111, 573–581 (1991).

    CAS  PubMed  Google Scholar 

  8. Ferguson-Smith, A. C., Sasaki, H. J., Cattanach, B. M. & Surani, M. A. Nature 362, 751–755 (1993).

    Article  ADS  CAS  Google Scholar 

  9. Bartolomei, M. S. et al. Genes Dev. 7, 1663–1673 (1993).

    Article  CAS  Google Scholar 

  10. Brandeis, M. et al. EMBO J. 12, 3669–3677 (1993).

    Article  CAS  Google Scholar 

  11. Sasaki, H. et al. Genes Dev. 6, 1843–1856 (1992).

    Article  CAS  Google Scholar 

  12. Stöger, R. et al. Cell 73, 61–71 (1993).

    Article  Google Scholar 

  13. Li, E., Bestor, T. H. & Jaenisch, R. Cell 69, 915–926 (1992).

    Article  CAS  Google Scholar 

  14. Bartolomei, M. S., Zemel, S. & Tilghman, S. M. Nature 351, 153–155 (1991).

    Article  ADS  CAS  Google Scholar 

  15. DeChiara, T. M., Robertson, E. J. & Efstratiadis, A. Cell 64, 849–859 (1991).

    Article  CAS  Google Scholar 

  16. Barlow, D. P., Stöger, R., Herrmann, B. G., Saito, K. & Schweifer, N. Nature 349, 84–87 (1991).

    Article  ADS  CAS  Google Scholar 

  17. Cedar, H. Cell 53, 3–4 (1988).

    Article  CAS  Google Scholar 

  18. Bird, A. P. Nature 321, 209–213 (1986).

    Article  ADS  CAS  Google Scholar 

  19. Chaillet, J. R., Vogt, T. F., Beier, D. R. & Leder, P. Cell 66, 77–83 (1991).

    Article  CAS  Google Scholar 

  20. Chomzynski, P. & Sacchi, N. Analyt. Biochem. 162, 156–159 (1987).

    Article  Google Scholar 

  21. Melton, D. A. et al. Nucleic Acids Res. 12, 7035–7056 (1984).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, E., Beard, C. & Jaenisch, R. Role for DNA methylation in genomic imprinting. Nature 366, 362–365 (1993). https://doi.org/10.1038/366362a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/366362a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing