Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cyclic ADP-ribose as an endogenous regulator of the non-skeletal type ryanodine receptor Ca2+ channel

Abstract

THE skeletal and cardiac isoforms1 of the ryanodine receptor Ca2+channel (RyRC) constitute the Ca2+ release pathway in sarcoplasmic reticulum of skeletal and cardiac muscles, respectively 2,3. A direct mechanical and a Ca2+-triggered mechanism (Ca2+-induced Ca2+ release) have been respectively proposed to explain the in situ activation of Ca2+ release in skeletal and cardiac muscle4,5. In non-muscle cells, however, where the RyRC also participates in Ca2+ signalling6–11, the mechanism of RyRC activation is unknown. Cyclic adenosine 5′-diphosphoribose (cADPR)12, which is present in many mammalian tissues13, has been reported to induce Ca2+ release from ryanodine-sensitive intracellular Ca2+ stores in sea urchin eggs14. Here we provide evidence that cADPR directly activates the cardiac but not the skeletal isoform of the RyRC. This, together with results on sea urchin eggs14, suggests that cADPR is an endogenous activator of the non-skeletal type of RyRC and may thus have a role similar to inositol 1,4,5-trisphosphate15 in Ca2+ signalling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Otsu, K. et al. J. biol. Chem. 265, 13472–13483 (1990).

    CAS  PubMed  Google Scholar 

  2. Fleischer, S. & Inui, M. A. Rev. biophys. Chem. 18, 333–364 (1989).

    Article  CAS  Google Scholar 

  3. Lai, F.A. & Meissner, G. Adv. exp. med. Biol. 269, 73–77 (1990).

    Article  CAS  Google Scholar 

  4. Fabiato, A. Molec. cell. Biochem. 89, 135–140 (1989).

    Article  CAS  Google Scholar 

  5. Rios, E. & Pizarro, G. Physiol. Rev. 71, 849–908 (1991).

    Article  CAS  Google Scholar 

  6. Ashley, R.H. J. Membr. Biol. 111, 179–189 (1989).

    Article  CAS  Google Scholar 

  7. Cheek, T.R., Barry, V.A., Berridge, M. J. & Missiaen, L. Biochem. J. 275, 697–701 (1991).

    Article  CAS  Google Scholar 

  8. Fasolato, C. et al. J. biol. Chem. 266, 20159–20167 (1991).

    CAS  PubMed  Google Scholar 

  9. Mészáros, L.G. & Volpe, P. Am. J. Physiol. 261, C1048–C1054 (1991).

    Article  Google Scholar 

  10. Shoshan-Barmatz, V., Pressley, T.A., Higham, S. & Kraus-Friedman, N. Biochem. J. 276, 41–46 (1991).

    Article  CAS  Google Scholar 

  11. Giannini, G., Clementi, E., Ceci, R., Marziali, G. & Sorrentiono, V. Science 257, 91–94 (1992).

    Article  ADS  CAS  Google Scholar 

  12. Lee, H.C., Walseth, T. F., Bratt, G. T., Hayes, R. N. & Clapper, D. L. J. biol. Chem. 264, 1608–1615 (1989).

    CAS  PubMed  Google Scholar 

  13. Rusinko, N. & Lee, H.C. J. biol. Chem. 264, 11725–11731 (1989).

    CAS  PubMed  Google Scholar 

  14. Galione, A., Lee, H. C. & Busa, W.B. Science 253, 1143–1146 (1991).

    Article  ADS  CAS  Google Scholar 

  15. Berridge, M. J. & Irvine, R.F. Nature 341, 197–205 (1989).

    Article  ADS  CAS  Google Scholar 

  16. Ikemoto, N., Ronjat, M. & Mészáros, L. G. J. Bioenerg. Biomembr. 21, 247–266 (1989).

    Article  CAS  Google Scholar 

  17. Mészáros, L.G. & Ikemoto, N. J. biol. Chem. 260, 16076–16079 (1985).

    PubMed  Google Scholar 

  18. Meissner, G.T. J. biol. Chem. 261, 6300–6306 (1986).

    CAS  PubMed  Google Scholar 

  19. Chu, A., Diaz-Munoz, M., Hawkes, M.J., Brush, K. & Hamilton, S. L. Molec. Pharmac. 37, 735–741 (1990).

    CAS  Google Scholar 

  20. Waseth, T. F., Aarhus, R., Zeleznikar, R.J. & Lee, H. C. Biochem. biophys. Acta 1094, 113–120 (1991).

    Article  Google Scholar 

  21. Galione, A. Trends pharmac. Sci. 13, 304–306 (1992).

    Article  CAS  Google Scholar 

  22. Koshiyama, H., Lee, H. C. & Tashjian, A. H. J. biol. Chem. 266, 16985–16988 (1991).

    CAS  PubMed  Google Scholar 

  23. Colquhoun, D. & Sigworth, F. J. in Single-channel Recording (eds Sakmann, B. & Neher, E.) 191–264 (Plenum, NewYork, 1983).

    Book  Google Scholar 

  24. Sumida, N., Wang, T., Mandel, F., Froehlich, J. P. & Schwartz, A. J. biol. Chem. 253, 8772–8777 (1978).

    CAS  PubMed  Google Scholar 

  25. Edelman, A. M., Hunter, D. D., Hendrickson, A. E. & Krebs, E. G. J. Neurochem. 5, 2609–2617 (1985).

    CAS  Google Scholar 

  26. Fill, M. et al. Biophys. J. 50, 471–475 (1990).

    Article  Google Scholar 

  27. Chu, A. & Stefani, E. J. biol. Chem. 266, 7699–7705 (1991).

    CAS  PubMed  Google Scholar 

  28. Hamilton, S. L. et al. Analyt. Biochem. 183, 31–41 (1989).

    Article  CAS  Google Scholar 

  29. Rousseau, E., Smith, J. S. & Meissner, G. Am. J. Physiol. 253, C364–C368 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mészáros, L., Bak, J. & Chu, A. Cyclic ADP-ribose as an endogenous regulator of the non-skeletal type ryanodine receptor Ca2+ channel. Nature 364, 76–79 (1993). https://doi.org/10.1038/364076a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/364076a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing