Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Substantial hydrogen solubility in olivine and implications for water storage in the mantle

Abstract

WATER plays an important role in geodynamic processes in the Earth's upper mantle: for example, hydrogen (as water) affects the amount and composition of magma generated by partial melting1 and a trace amount of hydrogen ( 0.001 wt% water) can markedly weaken the dominant upper-mantle mineral, olivine2,3. Migration of hydrogen ions may be responsible for the anomalously high electrical conductivity of the asthenosphere4. The quantitative importance of hydrogen in mantle processes must depend on how much water or hydrogen can be stored in nominally anhydrous olivine, and on where hydrogen resides in the olivine lattice. Here we report the results of hydrothermal experiments on olivine single crystals, which show that at 1,573 K and 50–300 MPa, olivine can accommodate as much as 0.0034 wt % water. Hydrogen solubility depends on hydrogen fugacity and oxygen fugacity to the first and the one-half powers, respectively, indicating that hydrogen ions are associated with either oxygen interstitials or magnesium vacancies. Extrapolation of our data to a depth of 100 km under oceanic areas yields a substantial hydrogen solubility (0.03 wt % water), demonstrating that olivine may indeed be a primary sink for hydrogen in the upper mantle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wilson, M. Igneous Petrogenesis: A Global Tectonic Approach 54 (Hyman, London, 1989).

    Book  Google Scholar 

  2. Mackwell, S. J., Kohlstedt, D. L. & Paterson, M. S. J. geophys. Res. 90, 11319–11333 (1983).

    Article  ADS  Google Scholar 

  3. Karato, S., Paterson, M. S. & Fitz Gerald, J. D. J. geophys. Res. 91, 8151–8176 (1986).

    Article  ADS  CAS  Google Scholar 

  4. Karato, S. Nature 347, 272–273 (1990).

    Article  ADS  CAS  Google Scholar 

  5. Mackwell, S. J. & Kohlstedt, D. L. J. geophys. Res. 95, 5079–5088 (1990).

    Article  ADS  Google Scholar 

  6. Bai, Quan & Kohlstedt, D. L. Phys. Chem. Miner. (submitted).

  7. Willard Gibbs, J. The Scientific Papers of J. Willard Gibbs (Dover, New York, 1961).

    MATH  Google Scholar 

  8. Tödheide, K. in Water: A Comprehensive Treatise 1: The Physical Chemistry of Water (ed. Franks, F.) 463–514 (Plenum, New York, 1972).

    Google Scholar 

  9. Shaw, H. R. & Wones, D. R. Am. J. Sci. 262, 918–929 (1964).

    Article  ADS  CAS  Google Scholar 

  10. Robie, R. A. et al. U.S. geol. Surv. Bull. 1452, 172 (1978).

    Google Scholar 

  11. Mackwell, S. J., Dimos, D. & Kohlstedt, D. L. Phil. Mag. A57, 779–789 (1988).

    Article  ADS  Google Scholar 

  12. Paterson, M. S. Bull. Miner. 105, 20–29 (1982).

    CAS  Google Scholar 

  13. Bell, D. R. & Rossman, G. R. Science 255, 1391–1397 (1992).

    Article  ADS  CAS  Google Scholar 

  14. Kröger, F. A. & Vink, H. J. Solid State Physics Vol. 3 (ed. Seitz F. & Turnball, D.) 307–435 (Academic, New York, 1956).

    Article  Google Scholar 

  15. Mercier, J. C. & Carter, N. L. J. geophys. Res. 80, 3349–3362 (1975).

    Article  ADS  CAS  Google Scholar 

  16. Mercier, J. C. Tectonophysics 70, 1–37 (1980).

    Article  ADS  Google Scholar 

  17. Lambert, T. B. & Wyllie, P. J. Nature 219, 1240–1241 (1968).

    Article  ADS  CAS  Google Scholar 

  18. Eggler, D. H. Geophys. Res. Lett. 10, 365–368 (1983).

    Article  ADS  CAS  Google Scholar 

  19. Wood, B. J., Bryndzia, L. T. & Johnson, K. E. Science 248, 337–345 (1990).

    Article  ADS  CAS  Google Scholar 

  20. Ballhaus, C., Berry, R. F. & Green, D. H. Nature 348, 437–440 (1990).

    Article  ADS  CAS  Google Scholar 

  21. Ringwood, A. E. Composition and Petrology of the Earth's Upper Mantle (McGraw-Hill, New York, 1975).

    Google Scholar 

  22. Michael, P. J. Geochim. Cosmochim. Acta 52, 555–566 (1988).

    Article  ADS  CAS  Google Scholar 

  23. Ringwood, A. E. & Major, A. Earth planet. Sci. Lett. 2, 130–133 (1967).

    Article  ADS  CAS  Google Scholar 

  24. Skogby, H. & Rossman, G. R. Am. mineral 74, 1059–1069 (1989).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bai, Q., Kohlstedt, D. Substantial hydrogen solubility in olivine and implications for water storage in the mantle. Nature 357, 672–674 (1992). https://doi.org/10.1038/357672a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/357672a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing