Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Territory covered by N diffusing particles

Abstract

THE number of distinct sites visited by a random walker after t steps is of great interest1–21, as it provides a direct measure of the territory covered by a diffusing particle. Thus, this quantity appears in the description of many phenomena of interest in ecology13–16, metallurgy5–7, chemistry17,18 and physics19–22. Previous analyses have been limited to the number of distinct sites visited by a single random walker19–22, but the (nontrivial) generalization to the number of distinct sites visited by TV walkers is particularly relevant to a range of problems-for example, the classic problem in mathematical ecology of defining the territory covered by N members of a given species13–16. Here we present an analytical solution to the problem of calculating SN(t), the mean number of distinct sites visited by N random walkers on a d-dimensional lattice, for d = 1, 2, 3 in the limit of large N. We confirm the analytical arguments by Monte Carlo and exact enumeration methods. We find that there are three distinct time regimes, and we determine SN(t) in each regime. Moreover, we also find a remarkable transition, for dimensions 2, in the geometry of the set of visited sites. This set initially grows as a disk with a relatively smooth surface until it reaches a certain size, after which the surface becomes increasingly rough.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Montroll, E. W. & West, B. J. in Fluctuation Phenomena (eds Montroll, E. W. & Lebowitz, J. L.) (North-Holland Personal Library, 1987).

    Google Scholar 

  2. Montroll, E. W. & Shlesinger, M. F. in Nonequilibrium Phenomena II. From Stochastics to Hydrodynamics (eds Lebowitz, J. L. & Montroll, E. W.) 1–121 (North-Holland, Amsterdam, 1984).

    Google Scholar 

  3. Dvoretzky, A. & Erdös, P. in Proc. 2nd Berkeley Symp. 33 (University of California, Berkeley, 1951).

    Google Scholar 

  4. Vineyard, G. H. J. math. Phys. 4, 1191–1193 (1963).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  5. Beeler, R. J. & Delaney, J. A. Phys. Rev. A130, 962–966 (1963).

    Article  ADS  CAS  Google Scholar 

  6. Beeler, R. J. Phys. Rev. A134, 1396–1401 (1964).

    Article  ADS  Google Scholar 

  7. Rosenstock, H. B. Phys. Rev. A187, 1166–1168 (1969).

    Article  ADS  CAS  Google Scholar 

  8. Montroll, E. W. in Stochastic Processes in Applied Mathematics XVI, 193–220 (American Mathematical Society, Providence, 1964).

    Google Scholar 

  9. Montroll, E. W. & Weiss, G. H. J. math. Phys. 6, 167–177 (1965).

    Article  ADS  Google Scholar 

  10. Jain, N. C. & Orey, S. Israel J. Math. 6, 373–380 (1968).

    Article  MathSciNet  Google Scholar 

  11. Henyey, F. S. & Seshadri, V. J. chem. Phys. 76, 5530–5534 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  12. Torney, D. C. J. stat. Phys. 44, 49–66 (1986).

    Article  ADS  Google Scholar 

  13. Skellam, J. G. Biometrika 38, 196–218 (1951).

    Article  MathSciNet  CAS  Google Scholar 

  14. Skellam, J. G. Biometrika 39, 346–362 (1952).

    Google Scholar 

  15. Pielou, E. C. An Introduction to Mathematical Ecology (Wiley-lnterscience, New York, 1969).

    MATH  Google Scholar 

  16. Edelstein-Keshet, L. Mathematical Models in Biology (Random House, New York, 1988).

    MATH  Google Scholar 

  17. Smoluchowski, M. v. Z. phys. Chem. 29, 129 (1917).

    Google Scholar 

  18. Rice, S. A. Diffusion-Controlled Reactions (Elsevier, Amsterdam, 1985).

    Google Scholar 

  19. Haus, J. W. & Kehr, K. W. Physics Rep. 150, 263–416 (1987).

    Article  ADS  CAS  Google Scholar 

  20. Havlin, S. & Ben-Avraham, D. Adv. Phys. 36, 695–798 (1987).

    Article  ADS  CAS  Google Scholar 

  21. Bouchaud, J.-P. & Georges, A. Physics Rep. 195, 127–293 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  22. Bunde, A. & Havlin, S. (eds) Fractals and Disordered Systems (Springer, Berlin, 1991).

  23. Barber, M. N. & Ninham, B. W. Random and Restricted Walks (Gordon & Breach, New York, 1970).

    MATH  Google Scholar 

  24. Berg, H. C. Random Walks in Biology (Princeton University Press, 1983).

    Google Scholar 

  25. Weiss, G. H. & Rubin, R. J. Adv. chem. Phys. 52, 363–475 (1983).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larralde, H., Trunfio, P., Havlin, S. et al. Territory covered by N diffusing particles. Nature 355, 423–426 (1992). https://doi.org/10.1038/355423a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/355423a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing